Mechanistic role of phosphatidylinositol 5-phosphate 4-kinase beta in GTP-dependent lysosomal acidification for stress-resilient cell growth and metabolism
磷脂酰肌醇5-磷酸4-激酶β在GTP依赖性溶酶体酸化中对应激恢复细胞生长和代谢的机制作用
基本信息
- 批准号:10797540
- 负责人:
- 金额:$ 22.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-12-15 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAnabolismAutophagocytosisBiogenesisCatabolismCellsCellular Metabolic ProcessCollaborationsCytoprotectionDegradation PathwayDependenceDiseaseEnzymesExhibitsFamilyFastingGenesGeneticGenetic TranscriptionGrowthGuanosine TriphosphateHepaticHomeostasisHypoglycemiaIsoenzymesLaboratoriesLipidsLysosomesMalignant NeoplasmsMediatingMetabolic DiseasesMetabolismMolecularMusObesityOrganellesPathogenesisPhenotypePhosphatidylinositolsPhosphotransferasesPhysiologicalPlayProductivityPropertyReactive Oxygen SpeciesResearchRoleSecond Messenger SystemsSignal TransductionStressSystemTestingcell growthinorganic phosphateinsulin sensitivitykinase inhibitornovelnutrient deprivationpharmacologicphosphatidylinositol 5-phosphatepublic health relevanceresponsereverse geneticsscaffoldscreeningsensorstress resiliencetumortumorigenesis
项目摘要
Increased anabolism is a common feature of tumors and several metabolic diseases. The high anabolic state is
typically accompanied by systemic suppression of catabolism (e.g., lysosome biogenesis and autophagy).
Paradoxically, the anabolic cells increase dependence on the lysosomal degradation pathways to counteract the
obligately increased stresses, such as malfunctioned organelle and reactive oxygen species. However, the
molecular mechanism of how cells activate lysosomal functions regardless of their anabolic state remains largely
unknown. Phosphatidylinositol 5-phosphate 4-kinase (PI5P4K) is a family of enzymes, consisting of PI5P4Kα, β,
γ, and converts the lipid second messenger, phosphatidylinositol 5-phosphate (PI5P), to phosphatidylinositol
4,5-phosphate (PI(4,5)P2). The main function of PI5P4K is considered to control PI5P-dependent signaling, as
the bulk of PI(4,5)P2 is generated from another family of enzymes, PI4P5Ks. Genetic deletion studies of the three
genes in the PI5P4K family (Pip4k2a, Pip4k2b, and Pip4k2c) in mice indicate that PI5P4Kβ plays distinct and
critical roles in mediating cellular responses to stress (e.g., nutrient deprivation, ROS) and ultimately affect
whole-body insulin sensitivity, growth, obesity, and cancer. Importantly, PI5P4Ks are atypical kinases that have
a unique property to use GTP as a phosphodonor. In particular, PI5P4Kβ preferentially uses GTP rather than
ATP, and its kinase activity is regulated by physiological GTP concentrations, acting as a cellular GTP sensor
for metabolism and tumorigenesis by mechanisms yet to be defined. Pertaining to this proposal, our group has
developed isozyme selective PI5P4K inhibitors using newly developed NMR-based screening, and found that
treatment of the PI5P4K inhibitors suppressed lysosome acidification. Newly generated GTP-insensitive
Pip4k2bF205L/F205L mice developed severe steatosis compared to WT mice, and exhibited increased hypoglycemia
upon fasting, resembling the phenotype of autophagy deficiency. We hypothesize that GTP-dependent PI5P4Kβ
activation promotes lysosomal acidification to counterbalance the anabolic stress for stress-resilient cellular
growth and hepatic functions. Capitalizing on our long-standing, productive collaborations with a number of
cutting-edge laboratories, we will define the mechanistic role of PI5P4Kβ in transcriptionally-independent
lysosomal acidification and stress-resilient growth. Using the “structural reverse-genetics” framework that we
have developed recently, we will dissect and determine the role of kinase activity and scaffolding functions of
PI5P4Kβ (Aim 1). We will test the hypothesis that GTP-dependent PI5P4Kβ activity is required for hepatic
lysosomal function and whole-body energy homeostasis (Aim 2). Upon completing the proposed research, we
will identify the novel stress counteracting system through which GTP-mediated activation of PI5P4Kβ promotes
lysosomal activation to support stress-resilient anabolic cell growth and protect mice from the pathogenesis of
metabolic diseases.
肿瘤和几种代谢性疾病的共同特征是血管张力增加。高合成代谢状态是
通常伴有全身性的卡他命抑制(例如,溶酶体生物发生和自噬)。
巧合的是,合成代谢细胞增加了对溶酶体降解途径的依赖性,以抵消细胞的代谢。
强制性增加的压力,如功能失调的细胞器和活性氧。但
细胞如何激活溶酶体功能的分子机制,无论其合成代谢状态如何,
未知磷脂酰肌醇5-磷酸4-激酶(PI 5 P4 K)是一个酶家族,由PI 5 P4 K α,β,
γ,并将脂质第二信使磷脂酰肌醇5-磷酸(PI 5 P)转化为磷脂酰肌醇
4,5-磷酸(PI(4,5)P2)。PI 5 P4 K的主要功能被认为是控制PI 5 P依赖性信号传导,
PI(4,5)P2的大部分由另一个酶家族PI 4P 5 Ks产生。三种基因缺失研究
小鼠中PI 5 P4 K家族(Pip 4k 2a、Pip 4k 2b和Pip 4k 2c)中的基因表明PI 5 P4 K β发挥独特的作用,
在介导细胞对应激反应中的关键作用(例如,营养剥夺,ROS),并最终影响
全身胰岛素敏感性、生长、肥胖和癌症。重要的是,PI 5 P4 K是非典型激酶,
使用GTP作为磷酸供体的独特性质。特别是,PI 5 P4 K β优先使用GTP,而不是
ATP,其激酶活性受生理GTP浓度调节,作为细胞GTP传感器
代谢和肿瘤发生的机制尚未确定。关于这项建议,我们的小组已
使用新开发的基于NMR的筛选开发了同工酶选择性PI 5 P4 K抑制剂,并发现
PI 5 P4 K抑制剂的处理抑制了溶酶体酸化。新生成的GTP不敏感
与WT小鼠相比,Pip 4k 2bF 205 L/F205 L小鼠发生了严重的脂肪变性,并表现出低血糖增加
在禁食时,类似于自噬缺陷的表型。我们假设GTP依赖性PI 5 P4 K β
激活促进溶酶体酸化以平衡应激细胞的合成代谢应激
生长和肝功能。利用我们与一些国家和地区的长期、富有成效的合作,
尖端的实验室,我们将定义PI 5 P4 K β在转录独立的机制中的作用,
溶酶体酸化和抗应激生长。利用我们所研究的“结构反向遗传学”框架,
最近发展起来的,我们将解剖和确定激酶活性和支架功能的作用,
PI 5 P4 K β(目的1)。我们将检验GTP依赖性PI 5 P4 K β活性是肝细胞凋亡所必需的这一假设。
溶酶体功能和全身能量稳态(目的2)。在完成拟议的研究后,我们
将确定GTP介导的PI 5 P4 K β激活促进的新型应激抵消系统
溶酶体活化以支持应激弹性合成代谢细胞生长并保护小鼠免受
代谢性疾病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Atsuo Sasaki其他文献
Atsuo Sasaki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Atsuo Sasaki', 18)}}的其他基金
Mechanistic role of phosphatidylinositol 5-phosphate 4-kinase beta in GTP-dependent lysosomal acidification for stress-resilient cell growth and metabolism
磷脂酰肌醇5-磷酸4-激酶β在GTP依赖性溶酶体酸化对应激恢复细胞生长和代谢中的机制作用
- 批准号:
10592707 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
Therapeutic resistance and aggressive malignancy in glioblastomas: the contribution of GTP metabolism through regulation by IMPDH2
胶质母细胞瘤的治疗耐药性和侵袭性恶性肿瘤:IMPDH2 调节 GTP 代谢的贡献
- 批准号:
10682618 - 财政年份:2021
- 资助金额:
$ 22.9万 - 项目类别:
Therapeutic resistance and aggressive malignancy in glioblastomas: the contribution of GTP metabolism through regulation by IMPDH2
胶质母细胞瘤的治疗耐药性和侵袭性恶性肿瘤:IMPDH2 调节 GTP 代谢的贡献
- 批准号:
10296056 - 财政年份:2021
- 资助金额:
$ 22.9万 - 项目类别:
Therapeutic resistance and aggressive malignancy in glioblastomas: the contribution of GTP metabolism through regulation by IMPDH2
胶质母细胞瘤的治疗耐药性和侵袭性恶性肿瘤:IMPDH2 调节 GTP 代谢的贡献
- 批准号:
10447195 - 财政年份:2021
- 资助金额:
$ 22.9万 - 项目类别:
Synthetic Lethal Combination of KRP203/Fingolimod with PI3K signaling for glioblastoma multiforme death by catastrophic vacuolization
KRP203/芬戈莫德与 PI3K 信号传导的合成致死组合可导致多形性胶质母细胞瘤灾难性空泡化死亡
- 批准号:
9335996 - 财政年份:2016
- 资助金额:
$ 22.9万 - 项目类别:
Synthetic Lethal Combination of KRP203/Fingolimod with PI3K signaling for glioblastoma multiforme death by catastrophic vacuolization
KRP203/芬戈莫德与 PI3K 信号传导的合成致死组合可导致多形性胶质母细胞瘤灾难性空泡化死亡
- 批准号:
9227435 - 财政年份:2016
- 资助金额:
$ 22.9万 - 项目类别:
Targeting the Novel PI5P4K Pathway to Induce Glioblastoma Senescence
靶向新的 PI5P4K 途径诱导胶质母细胞瘤衰老
- 批准号:
8935962 - 财政年份:2014
- 资助金额:
$ 22.9万 - 项目类别:
Targeting the Novel PI5P4K Pathway to Induce Glioblastoma Senescence
靶向新的 PI5P4K 途径诱导胶质母细胞瘤衰老
- 批准号:
8800075 - 财政年份:2014
- 资助金额:
$ 22.9万 - 项目类别:
Chemical probes that modulate a stress pathway phosphatidylinositol 5-phosphate 4
调节应激途径磷脂酰肌醇 5-磷酸 4 的化学探针
- 批准号:
8262562 - 财政年份:2012
- 资助金额:
$ 22.9万 - 项目类别:
Chemical Probes That Modulate Phosphatidylinositol-5-Phosphate 4-Kinase Activity
调节磷脂酰肌醇 5 磷酸 4 激酶活性的化学探针
- 批准号:
8403186 - 财政年份:2012
- 资助金额:
$ 22.9万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 22.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 22.9万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 22.9万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 22.9万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 22.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 22.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 22.9万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 22.9万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 22.9万 - 项目类别:
Discovery Early Career Researcher Award














{{item.name}}会员




