Regenerative and degenerative responses to axonal injury
对轴突损伤的再生和退行性反应
基本信息
- 批准号:10296110
- 负责人:
- 金额:$ 54.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesivesAlzheimer&aposs DiseaseAnimal ModelAxonAxonal TransportBehaviorBrainCategoriesCell DeathCellsCytoskeletonDisease modelDrosophila genusDrosophila melanogasterExcisionFutureGenesGoalsImmuneImmune responseImmune systemImpairmentIndividualInjuryLeadLightMammalsMicrogliaMitogen-Activated Protein KinasesModelingMolecularMotor NeuronsMusMutationNervous System TraumaNervous system structureNeurodegenerative DisordersNeuromuscular JunctionNeuronal InjuryNeuronsNeuropathyOrganismOutcomePathway interactionsPeripheralPeripheral nerve injuryPhenotypePhosphotransferasesPresynaptic TerminalsProcessPublic HealthRegulationRiboTagRodentSignal PathwaySignal TransductionSpinal CordStressStructureSynapsesTechnologyTestingTherapeuticTraumatic Brain InjuryWorkaxon growthaxon injuryaxon regenerationbasebiological adaptation to stresscell typechemotherapyexcitotoxicityexperimental studyextracellularinjuredinsightinterestlensmouse modelnerve damagenerve injuryneurodegenerative dementianeuron lossneuronal circuitryneurotransmissionpainful neuropathyrecruitregenerativerepairedresponsesingle-cell RNA sequencingstroke model
项目摘要
Project Summary/Abstract:
Axons form connections between neurons over great distances in the brain and body, hence are vulnerable to
damage and stress. This project studies an evolutionarily conserved stress response pathway that becomes
activated in multiple scenarios of axonal damage and stress. The pathway, governed by the dileucine zipper
kinase DLK, known as Wallenda (Wnd) in Drosophila, engages structural plasticity mechanisms in neurons
that allow circuits to adapt to axon damage. These responses include axonal regeneration, neuronal death,
and, newly discovered in this project, synapse loss. The long-term goals of this project are (1) to understand
the mechanisms that lead to DLK signaling activation, and (2) to understand the cellular pathways that are
regulated by DLK. The project combines studies in both Drosophila and mice, focusing on motoneuron (MN)
responses to peripheral nerve injury (PNI). For the first goal, Aim 1 tests a hypothesis that DLK/Wnd signaling
is restrained by the presence of an intact synaptic connection, hence becomes activated following synapse
loss. The experiments build upon observations in complementary paradigms of synapse loss at Drosophila
neuromuscular junction (NMJ) synapse: (a) injuries to branched axons demonstrate that only complete
removal of all efferent connections are capable of activating Wnd signaling; (b) multiple cytoskeletal mutations
that lead to retraction and degeneration of NMJ synapses also lead to Wnd signaling activation. The proposed
experiments will distinguish how synaptic interactions intersect with the process of axonal transport to control
the activation of Wnd. Aim 2 studies the downstream responses regulated by DLK that enable structural
plasticity, and focuses on new phenotypes for DLK in the mouse spinal cord: the loss of synaptic inputs on the
cell bodies of axotomized MNs (termed `synaptic stripping') is dependent upon DLK function in MNs. In
addition, the recruitment of activated microglia to the MN cell body, which precedes the synapse loss, requires
DLK function in axotomized MNs. Aim 2 will test a hypothesis that DLK signaling gates the secretion of
molecular signals that recruit specific responses in microglia to facilitate synapse loss. The experiments will
evaluate the requirement of candidate secreted and immune molecules that were identified from a RiboTag
translational profiling approach to be strong targets of DLK regulation in axotomized MNs. The experiments will
also identify the microglial responses gated by DLK in axotomized MNs through single cell RNA-seq of isolated
microglia. Taken together, this work is expected to shed new light on neuron-microglial interactions relevant to
nervous system injury, and mechanisms structural plasticity and synapse loss through the specific lens of a
specific axonal damage signaling pathway.
项目摘要/摘要:
轴突在大脑和身体中远距离的神经元之间形成连接,因此很容易受到
伤害和压力。该项目研究了一条进化上保守的应激反应途径,该途径成为
在轴突损伤和压力的多种情况下被激活。该途径由二亮氨酸拉链控制
激酶 DLK,在果蝇中称为 Wallenda (Wnd),参与神经元的结构可塑性机制
使电路能够适应轴突损伤。这些反应包括轴突再生、神经元死亡、
并且,在这个项目中新发现的,突触损失。该项目的长期目标是 (1) 了解
导致 DLK 信号激活的机制,以及 (2) 了解细胞通路
受 DLK 监管。该项目结合了果蝇和小鼠的研究,重点关注运动神经元 (MN)
对周围神经损伤(PNI)的反应。对于第一个目标,目标 1 测试 DLK/Wnd 信号传输的假设
受到完整突触连接的限制,因此在突触后被激活
损失。这些实验建立在果蝇突触损失互补范式的观察基础上
神经肌肉接头 (NMJ) 突触:(a) 分支轴突损伤表明,只有完整的突触
移除所有能够激活 Wnd 信令的传出连接; (b) 多种细胞骨架突变
导致 NMJ 突触收缩和退化的因素也会导致 Wnd 信号传导激活。拟议的
实验将区分突触相互作用如何与轴突运输过程相交叉以进行控制
Wnd 的激活。目标 2 研究 DLK 调节的下游反应,使结构
可塑性,并重点关注小鼠脊髓中 DLK 的新表型:突触输入的丧失
轴突化的 MN 的细胞体(称为“突触剥离”)依赖于 MN 中的 DLK 功能。在
此外,在突触丢失之前,将活化的小胶质细胞募集到 MN 细胞体中,需要
DLK 在轴突化的 MN 中发挥作用。目标 2 将检验 DLK 信号传导门控分泌的假设
在小胶质细胞中招募特定反应以促进突触损失的分子信号。实验将
评估从 RiboTag 中识别出的候选分泌分子和免疫分子的需求
翻译分析方法是轴突 MN 中 DLK 调节的强有力目标。实验将
还通过分离的单细胞 RNA-seq 鉴定了轴突化 MN 中 DLK 门控的小胶质细胞反应
小胶质细胞。总而言之,这项工作有望为相关的神经元-小胶质细胞相互作用提供新的线索。
神经系统损伤,以及通过特定透镜的结构可塑性和突触损失的机制
特定的轴突损伤信号通路。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CATHERINE A COLLINS其他文献
CATHERINE A COLLINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CATHERINE A COLLINS', 18)}}的其他基金
Regenerative and degenerative responses to axonal injury
对轴突损伤的再生和退行性反应
- 批准号:
10263459 - 财政年份:2020
- 资助金额:
$ 54.69万 - 项目类别:
Regenerative and Degenerative Responses to Axonal Injury
对轴突损伤的再生和退行性反应
- 批准号:
8039157 - 财政年份:2010
- 资助金额:
$ 54.69万 - 项目类别:
Regenerative and Degenerative Responses to Axonal Injury
对轴突损伤的再生和退行性反应
- 批准号:
9028332 - 财政年份:2010
- 资助金额:
$ 54.69万 - 项目类别:
Regenerative and Degenerative Responses to Axonal Injury
对轴突损伤的再生和退行性反应
- 批准号:
8435511 - 财政年份:2010
- 资助金额:
$ 54.69万 - 项目类别:
Regenerative and Degenerative Responses to Axonal Injury
对轴突损伤的再生和退行性反应
- 批准号:
7862833 - 财政年份:2010
- 资助金额:
$ 54.69万 - 项目类别:
Regenerative and Degenerative Responses to Axonal Injury
对轴突损伤的再生和退行性反应
- 批准号:
8239537 - 财政年份:2010
- 资助金额:
$ 54.69万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 54.69万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 54.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 54.69万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 54.69万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 54.69万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 54.69万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 54.69万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 54.69万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 54.69万 - 项目类别:
Investment Accelerator