Bioelectricity in Gut Epithelium Drives Pathogenic Bacterial Targeting

肠道上皮细胞的生物电驱动致病细菌靶向

基本信息

  • 批准号:
    10302731
  • 负责人:
  • 金额:
    $ 23.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-21 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Project Summary Our gut contains about 100 trillion commensal bacteria that collectively contribute to nutrient absorption and maturation of the immune system, as well as play a central role in protecting the host from enteric bacterial infections. However, many enteric bacterial pathogens have developed strategies to colonize the intestinal mucosa and cause diseases. Clinically significant enteric bacteria, such as Salmonella, Shigella, Yersinia, and pathogenic E. coli, are a major public health concern due to their pathogenic capacities to cause severe diarrheal and extraintestinal diseases with potentially fatal consequences, and their ease of transmission through contaminated food and water. These bacteria have developed common strategies to specifically target and invade a relatively small number of follicle-associated epithelial (FAE) cells known as Microfold (M) cells to induce inflammation. Contamination with extremely low doses, sometimes with only a few pathogens, can cause severe enteritis and/or disseminated infections. It remains poorly understood how so few bacterial pathogens, which are typically surrounded by millions (if not billions) of commensal microbes, find a way to their targeted portal of entry—the low abundance M cells of the FAE. Previously, we have demonstrated the existence of endogenous bioelectric fields in the tracheal mucus epithelium of the rhesus monkey and, and for the first time, detected Salmonella infection-generated electric fields (IGEF) in mouse cecum FAE. These bioelectrical signals play critical roles during embryonic development, tissue regeneration and wound healing, as well as in disseminated infections as we demonstrate in our most recent work. By applying electric fields mimicking IGEF we have shown that commensal E. coli migrate to the anode and pathogenic Salmonella migrate to the cathode, exclusively and simultaneously. In this exploratory R21, we propose a novel mechanism of bioelectrical control in pathogenic bacterial targeting. Our central hypothesis is that an active epithelial “battery” exists around the FAE, which is intrinsically exploited by bacterial pathogens for invasive targeting. We will test our hypothesis through the following specific aims: 1) Spatially define and characterize bioelectrical activities at gut epithelia. Using advanced electrophysiological techniques, we will measure and pharmacologically manipulate ionic current density, trans-epithelial potential, and transmembrane potential in FAE and surrounding villus epithelium in an ex vivo mouse cecum model. Successful completion will establish the first bioelectricity profile of intestinal epithelium. 2) Dissect the mechanisms of bioelectricity at gut epithelia in bacterial invasive targeting. Our working hypothesis is that enteric pathogens utilize local bioelectricity to strategically target the FAE depending on the surface electrical properties of the bacteria. This will be tested genetically and affirmed in vitro and ex vivo. Understanding how the bioelectric properties guide pathogen entry into M cells could inform future pharmaceutical approaches to prevent/treat gastrointestinal infection and inflammation.
项目摘要 我们的肠道含有约100万亿个共生细菌,它们共同促进营养吸收, 成熟的免疫系统,以及发挥核心作用,保护宿主免受肠道细菌 感染.然而,许多肠道细菌病原体已经发展出在肠道中定殖的策略, 粘膜并引起疾病。临床上重要的肠道细菌,如沙门氏菌、志贺氏菌、耶尔森氏菌和 致病性大肠大肠杆菌,是一个主要的公共卫生问题,由于他们的致病能力,造成严重的 具有潜在致命后果的肠道和肠外疾病及其传播难易程度 通过受污染的食物和水。这些细菌已经发展出共同的策略, 并侵入相对少量的卵泡相关上皮(FAE)细胞,称为微折叠(M)细胞, 引起炎症。极低剂量的污染,有时只有几种病原体, 引起严重肠炎和/或播散性感染。人们仍然不太清楚为什么这么少的细菌 病原体通常被数百万(如果不是数十亿)的肠道微生物包围, 他们的目标入口-FAE的低丰度M细胞。 在此之前,我们已经证明了气管粘液中存在内源性生物电场 恒河猴的上皮细胞,并首次检测到沙门氏菌感染产生的电 场(IGEF)在小鼠盲肠FAE。这些生物电信号在胚胎发育过程中起着关键作用。 发育,组织再生和伤口愈合,以及在播散性感染,因为我们证明 在我们最近的工作中。通过施加模拟IGEF的电场,我们已经证明了Escherosal E。杆菌 迁移到阳极和致病性沙门氏菌迁移到阴极,排他地和同时地。 在这个探索性的R21中,我们提出了一种新的致病细菌生物电控制机制, 面向.我们的中心假设是,在FAE周围存在一个活跃的上皮细胞“电池”, 被细菌病原体本质上用于侵入性靶向。我们将测试我们的假设,通过 以下具体目的:1)在空间上定义和表征肠上皮的生物电活动。使用 先进的电生理学技术,我们将测量和操纵离子电流 FAE和周围绒毛上皮的密度、跨上皮电位和跨膜电位, 离体小鼠盲肠模型。成功完成将建立第一个肠道生物电剖面 上皮2)探讨细菌侵袭性靶向作用中肠上皮细胞生物电的机制。我们 工作假设是肠道病原体利用局部生物电来战略性地靶向FAE, 细菌表面的电特性。这将在基因上进行测试,并在体外和体外实验中得到证实。 vivo.了解生物电特性如何引导病原体进入M细胞可以为未来提供信息 用于预防/治疗胃肠道感染和炎症的药物方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yaohui Sun其他文献

Yaohui Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yaohui Sun', 18)}}的其他基金

Bioelectricity in Gut Epithelium Drives Pathogenic Bacterial Targeting
肠道上皮细胞的生物电驱动致病细菌靶向
  • 批准号:
    10435567
  • 财政年份:
    2021
  • 资助金额:
    $ 23.55万
  • 项目类别:

相似国自然基金

Neo-antigens暴露对肾移植术后体液性排斥反应的影响及其机制研究
  • 批准号:
    2022J011295
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
结核分枝杆菌持续感染期抗原(latency antigens)的重组BCG疫苗研究
  • 批准号:
    30801055
  • 批准年份:
    2008
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Bovine herpesvirus 4 as a vaccine platform for African swine fever virus antigens in pigs
牛疱疹病毒 4 作为猪非洲猪瘟病毒抗原的疫苗平台
  • 批准号:
    BB/Y006224/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.55万
  • 项目类别:
    Research Grant
A novel vaccine approach combining mosquito salivary antigens and viral antigens to protect against Zika, chikungunya and other arboviral infections.
一种结合蚊子唾液抗原和病毒抗原的新型疫苗方法,可预防寨卡病毒、基孔肯雅热和其他虫媒病毒感染。
  • 批准号:
    10083718
  • 财政年份:
    2023
  • 资助金额:
    $ 23.55万
  • 项目类别:
    Small Business Research Initiative
Uncovering tumor specific antigens and vulnerabilities in ETP-acute lymphoblastic leukemia
揭示 ETP-急性淋巴细胞白血病的肿瘤特异性抗原和脆弱性
  • 批准号:
    480030
  • 财政年份:
    2023
  • 资助金额:
    $ 23.55万
  • 项目类别:
    Operating Grants
Regulation of B cell responses to vaccines by long-term retention of antigens in germinal centres
通过在生发中心长期保留抗原来调节 B 细胞对疫苗的反应
  • 批准号:
    MR/X009254/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.55万
  • 项目类别:
    Research Grant
Adaptive Discrimination of Risk of Antigens in Immune Memory Dynamics
免疫记忆动态中抗原风险的适应性辨别
  • 批准号:
    22KJ1758
  • 财政年份:
    2023
  • 资助金额:
    $ 23.55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
22-ICRAD Call 2 - Improving the diagnosis of tuberculosis in domestic ruminants through the use of new antigens and test platforms
22-ICRAD 呼吁 2 - 通过使用新抗原和测试平台改善家养反刍动物结核病的诊断
  • 批准号:
    BB/Y000927/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.55万
  • 项目类别:
    Research Grant
Protective immunity elicited by distinct polysaccharide antigens of classical and hypervirulent Klebsiella
经典和高毒力克雷伯氏菌的不同多糖抗原引发的保护性免疫
  • 批准号:
    10795212
  • 财政年份:
    2023
  • 资助金额:
    $ 23.55万
  • 项目类别:
Integrative proteome analysis to harness humoral immune response against tumor antigens
综合蛋白质组分析利用针对肿瘤抗原的体液免疫反应
  • 批准号:
    23K18249
  • 财政年份:
    2023
  • 资助金额:
    $ 23.55万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Functionally distinct human CD4 T cell responses to novel evolutionarily selected M. tuberculosis antigens
功能独特的人类 CD4 T 细胞对新型进化选择的结核分枝杆菌抗原的反应
  • 批准号:
    10735075
  • 财政年份:
    2023
  • 资助金额:
    $ 23.55万
  • 项目类别:
Targeting T3SA proteins as protective antigens against Yersinia
将 T3SA 蛋白作为针对耶尔森氏菌的保护性抗原
  • 批准号:
    10645989
  • 财政年份:
    2023
  • 资助金额:
    $ 23.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了