Advanced development of Lancet, an emerging tool for complex variant calling in cancer genomics
柳叶刀的高级开发,一种用于癌症基因组学中复杂变异调用的新兴工具
基本信息
- 批准号:10304730
- 负责人:
- 金额:$ 50.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdvanced DevelopmentAlgorithmsBandageBehaviorBloodChromosomesColorCommunitiesComplexComputer softwareDNA sequencingDataDetectionDevelopmentDiseaseDisseminated Malignant NeoplasmDocumentationEngineeringEventEvolutionGenomeGenomic SegmentGoalsGraphHaplotypesJointsKnowledgeLibrariesLinkLongitudinal cohortMalignant NeoplasmsManualsMethodsModelingModernizationMutationPatientsPerformancePhasePlayPrimary NeoplasmPublicationsRelapseResearchResearch PersonnelResolutionRoleSample SizeSamplingSingle Nucleotide PolymorphismSomatic MutationSource CodeStructureTestingThe Cancer Genome AtlasTimeUpdateVariantVisualizationanticancer researchbasecancer cellcancer genomicscancer therapycohortcostdata visualizationdesignexome sequencinggenome analysisgenome sequencinggenome-widehigh throughput analysisimprovedimproved functioninginsertion/deletion mutationlight weightlongitudinal analysisnovel strategiesperformance testsprogramsprototypetooltumortumor progressiontumorigenesisuser-friendlyvariant detectionweb sitewhole genome
项目摘要
ABSTRACT
One of the central challenges in cancer genomics is the ability to accurately detect somatic mutations in
heterogeneous tumors, and precisely determine their clonal origin and evolution. This fundamental knowledge
is central to the discovery of new cancer therapies. In recent years, reductions in the cost of whole-genome and
whole-exome sequencing have enabled researchers to address these questions in unprecedented detail.
However, a major limitation in the field has been a paucity of methods for variant calling that extend beyond
identifying simple single-nucleotide variants (SNVs) and small indels to allow the characterization of complex
structural changes that also play a significant role in tumorigenesis and cancer progression. Indels of more than
a few bases are challenging to discover with typically used alignment-based methods. In addition, most variant
callers analyze tumor and normal data separately, which can introduce false positives such as when a mutation
shows partial support in the normal sample. Towards addressing these shortcomings, we recently introduced
Lancet, a new somatic variant caller developed under the auspices of the ITCR R21. Lancet leverages local
assembly and joint analysis of tumor-normal paired data using region-focused colored de Bruijn graphs, with on-
the-fly repeat composition analysis and a self-tuning k-mer strategy. This results in relatively reduced reference
bias; an improved ability to detect variations that significantly diverge from the reference chromosome
representations; a reduction in the scale of the analysis, leading to increased power and sensitivity to detect
variants through localized, comprehensive graph exploration; and dynamic adjustment of calling behavior
according to the sequence conditions of each genomic region. In testing, Lancet shows superior performance to
all major alignment-based methods in terms of accuracy, particularly in the detection of ‘twilight zone’ indels (30-
250 bp). Given its continued adoption and successful application in over a dozen high-impact publications,
Lancet is poised for more advanced development to enable continued improvements in its variant calling power,
precision, and analytical capabilities. Specifically, Lancet is currently limited by longer runtimes than alignment-
based methods, reduced sensitivity for longer insertions, lack of interactive visualization of the colored de Bruijn
graph, and the inability to jointly analyze longitudinal data. To address these limitations, we propose the following
Specific Aims: 1) Increase computational performance and facilitate user adoption and third-party development;
2) Add new features and enhancements to improve variant detection, phasing, and data visualization; and 3)
Enable joint assembly and analysis of longitudinal data. Impact: With additional development, the next iteration
of Lancet will feature advanced algorithms for fast, efficient, accurate, localized, user-friendly, and application-
modifiable variant analysis of phased genome-wide timeseries data, establishing it as one of the leading methods
for variant calling in cancer research.
摘要
癌症基因组学中的中心挑战之一是准确检测肿瘤细胞中的体细胞突变的能力。
异质性肿瘤,并精确地确定其克隆起源和进化。这些基本知识
是发现新的癌症疗法的关键近年来,全基因组成本的降低,
全外显子组测序使研究人员能够以前所未有的细节解决这些问题。
然而,该领域的一个主要限制是缺乏用于变体调用的方法,
鉴定简单的单核苷酸变体(SNV)和小的插入缺失,以允许表征复杂的
在肿瘤发生和癌症进展中也起重要作用的结构变化。插入缺失大于
用通常使用的基于双折射的方法发现一些碱基是有挑战性的。此外,大多数变体
调用者分别分析肿瘤和正常数据,这可能会引入假阳性,例如当突变发生时,
在正常样本中显示部分支持。为了解决这些缺点,我们最近推出了
Lancet,在ITCR R21的主持下开发的新的体细胞变异识别器。Lancet利用当地
使用区域聚焦彩色de Bruijn图对肿瘤-正常配对数据进行组装和联合分析,
the-fly重复序列组成分析和自调整k-mer策略。这导致相对减少的参考
偏倚;检测与参考染色体显著偏离的变异的能力提高
表示;分析规模的减少,导致检测的能力和灵敏度增加
通过本地化、全面的图形探索实现变体;以及动态调整调用行为
根据每个基因组区域的序列情况,在测试中,Lancet显示出上级性能,
在准确性方面,特别是在检测“过渡区”插入缺失方面,所有主要的基于插入缺失的方法(30-
250 bp)。鉴于其在十多个高影响力出版物中的持续采用和成功应用,
柳叶刀准备进行更先进的开发,以使其变异识别能力得到持续改进,
精度和分析能力。具体来说,Lancet目前受到运行时间长于alignment的限制-
基于方法,较长插入的灵敏度降低,缺乏彩色de Bruijn的交互式可视化
图表,以及无法共同分析纵向数据。为了解决这些局限性,我们提出以下建议
具体目标:1)提高计算性能,促进用户采用和第三方开发;
2)添加新功能和增强功能,以改进变体检测、定相和数据可视化;以及3)
启用纵向数据的联合装配和分析。影响:通过额外的开发,下一次迭代
将采用先进的算法,快速,高效,准确,本地化,用户友好,应用-
对全基因组时间序列数据进行可修改的变异分析,使其成为领先的方法之一
for variant变异calling调用in cancer癌症research研究.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giuseppe Narzisi其他文献
Giuseppe Narzisi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giuseppe Narzisi', 18)}}的其他基金
Advanced development of Lancet, an emerging tool for complex variant calling in cancer genomics
柳叶刀的高级开发,一种用于癌症基因组学中复杂变异调用的新兴工具
- 批准号:
10491232 - 财政年份:2021
- 资助金额:
$ 50.65万 - 项目类别:
Advanced development of Lancet, an emerging tool for complex variant calling in cancer genomics
柳叶刀的高级开发,一种用于癌症基因组学中复杂变异调用的新兴工具
- 批准号:
10697390 - 财政年份:2021
- 资助金额:
$ 50.65万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 50.65万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 50.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 50.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 50.65万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 50.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 50.65万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 50.65万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 50.65万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 50.65万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 50.65万 - 项目类别:
Standard Grant