Advanced development of Lancet, an emerging tool for complex variant calling in cancer genomics
柳叶刀的高级开发,一种用于癌症基因组学中复杂变异调用的新兴工具
基本信息
- 批准号:10491232
- 负责人:
- 金额:$ 49.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdvanced DevelopmentAlgorithmsBandageBehaviorBloodChromosomesColorCommunitiesComplexComputer softwareDNA sequencingDataDetectionDevelopmentDiseaseDisseminated Malignant NeoplasmDocumentationEngineeringEventEvolutionGenomeGenomic SegmentGoalsGraphHaplotypesJointsKnowledgeLibrariesLinkLongitudinal cohortMalignant NeoplasmsManualsMethodsModelingModernizationMutationPatientsPerformancePhasePlayPrimary NeoplasmPublicationsRelapseResearchResearch PersonnelResolutionRoleSample SizeSamplingSingle Nucleotide PolymorphismSomatic MutationSource CodeStructureTestingThe Cancer Genome AtlasTimeUpdateVariantVisualizationanticancer researchbasecancer cellcancer genomicscancer therapycohortcostdata visualizationdesignexome sequencinggenome analysisgenome sequencinggenome-widehigh throughput analysisimprovedimproved functioninginsertion/deletion mutationlight weightlongitudinal analysisnovel strategiesperformance testsprogramsprototypetooltumortumor progressiontumorigenesisuser-friendlyvariant detectionweb sitewhole genome
项目摘要
ABSTRACT
One of the central challenges in cancer genomics is the ability to accurately detect somatic mutations in
heterogeneous tumors, and precisely determine their clonal origin and evolution. This fundamental knowledge
is central to the discovery of new cancer therapies. In recent years, reductions in the cost of whole-genome and
whole-exome sequencing have enabled researchers to address these questions in unprecedented detail.
However, a major limitation in the field has been a paucity of methods for variant calling that extend beyond
identifying simple single-nucleotide variants (SNVs) and small indels to allow the characterization of complex
structural changes that also play a significant role in tumorigenesis and cancer progression. Indels of more than
a few bases are challenging to discover with typically used alignment-based methods. In addition, most variant
callers analyze tumor and normal data separately, which can introduce false positives such as when a mutation
shows partial support in the normal sample. Towards addressing these shortcomings, we recently introduced
Lancet, a new somatic variant caller developed under the auspices of the ITCR R21. Lancet leverages local
assembly and joint analysis of tumor-normal paired data using region-focused colored de Bruijn graphs, with on-
the-fly repeat composition analysis and a self-tuning k-mer strategy. This results in relatively reduced reference
bias; an improved ability to detect variations that significantly diverge from the reference chromosome
representations; a reduction in the scale of the analysis, leading to increased power and sensitivity to detect
variants through localized, comprehensive graph exploration; and dynamic adjustment of calling behavior
according to the sequence conditions of each genomic region. In testing, Lancet shows superior performance to
all major alignment-based methods in terms of accuracy, particularly in the detection of ‘twilight zone’ indels (30-
250 bp). Given its continued adoption and successful application in over a dozen high-impact publications,
Lancet is poised for more advanced development to enable continued improvements in its variant calling power,
precision, and analytical capabilities. Specifically, Lancet is currently limited by longer runtimes than alignment-
based methods, reduced sensitivity for longer insertions, lack of interactive visualization of the colored de Bruijn
graph, and the inability to jointly analyze longitudinal data. To address these limitations, we propose the following
Specific Aims: 1) Increase computational performance and facilitate user adoption and third-party development;
2) Add new features and enhancements to improve variant detection, phasing, and data visualization; and 3)
Enable joint assembly and analysis of longitudinal data. Impact: With additional development, the next iteration
of Lancet will feature advanced algorithms for fast, efficient, accurate, localized, user-friendly, and application-
modifiable variant analysis of phased genome-wide timeseries data, establishing it as one of the leading methods
for variant calling in cancer research.
抽象的
癌症基因组学的核心挑战之一是能够准确检测到体细胞突变的能力
异质性肿瘤,并精确地确定其克隆起源和进化。这种基本知识
是发现新的癌症疗法的核心。近年来,全基因组和
全外观测序使研究人员能够以前所未有的细节解决这些问题。
但是,该领域的主要限制是对变体呼叫的方法的稀少
识别简单的单核苷酸变体(SNV)和小实例,以允许复杂的表征
结构变化在肿瘤发生和癌症进展中也起着重要作用。多数超过
挑战一些基本的挑战是通过典型使用的基于对齐的方法发现。另外,大多数变体
呼叫者分别分析肿瘤和正常数据,这可以引入误报,例如突变时
在正常样本中显示部分支持。为了解决这些缺点,我们最近介绍了
柳叶刀是在ITCR R21的主持下开发的一种新的体细胞呼叫者。柳叶刀利用本地
使用以区域为中心的彩色de Bruijn图对肿瘤正常配对数据进行组装和联合分析,并具有
即时重复的组成分析和自我调整的K-MER策略。这导致相对降低的参考
偏见;提高的检测变化的能力,与参考染色体显着不同
表示;分析规模的减少,导致功率和灵敏度提高检测
通过局部,全面的图形探索变体;和呼叫行为的动态调整
根据每个基因组区域的序列条件。在测试中,柳叶刀表现出优越的性能
所有基于准确性的主要对齐方法的精度,尤其是在检测“暮光区” Indels(30--
250 bp)。鉴于它继续采用并在十几个高影响力出版物中成功应用
柳叶刀被毒化以进行更先进的开发,以使其变异的呼叫能力持续改善,
精度和分析能力。具体而言,柳叶刀目前的限制比对齐时间更长 -
基于较长插入的敏感性降低,彩色de Bruijn缺乏互动可视化
图形以及无法共同分析纵向数据。为了解决这些限制,我们建议以下
具体目的:1)提高计算绩效并促进用户采用和第三方开发;
2)添加新功能和增强功能,以改善变体检测,相位和数据可视化; 3)
实现纵向数据的联合组装和分析。影响:随着额外的发展,下一次迭代
Lancet的of of Advanced算法将用于快速,高效,准确,本地化,用户友好和应用程序 -
对分阶段基因组的时间表数据的可修改变体分析,将其确定为领先的方法之一
用于癌症研究的变体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giuseppe Narzisi其他文献
Giuseppe Narzisi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giuseppe Narzisi', 18)}}的其他基金
Advanced development of Lancet, an emerging tool for complex variant calling in cancer genomics
柳叶刀的高级开发,一种用于癌症基因组学中复杂变异调用的新兴工具
- 批准号:
10304730 - 财政年份:2021
- 资助金额:
$ 49.08万 - 项目类别:
Advanced development of Lancet, an emerging tool for complex variant calling in cancer genomics
柳叶刀的高级开发,一种用于癌症基因组学中复杂变异调用的新兴工具
- 批准号:
10697390 - 财政年份:2021
- 资助金额:
$ 49.08万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
- 批准号:
10673513 - 财政年份:2023
- 资助金额:
$ 49.08万 - 项目类别:
Mentoring the next generation of researchers at the intersection of opioid use disorder and chronic pain
指导下一代研究人员研究阿片类药物使用障碍和慢性疼痛的交叉点
- 批准号:
10663642 - 财政年份:2023
- 资助金额:
$ 49.08万 - 项目类别:
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
- 批准号:
10600737 - 财政年份:2023
- 资助金额:
$ 49.08万 - 项目类别:
Expanding early cancer detection with high throughput OCEANA - Ovarian Cancer Exosome Analysis with Nanoplasmonic Array
利用高通量 OCEANA 扩大早期癌症检测 - 使用纳米等离子体阵列进行卵巢癌外泌体分析
- 批准号:
10762488 - 财政年份:2023
- 资助金额:
$ 49.08万 - 项目类别:
Personalizing Post-Polypectomy Surveillance for Colorectal Cancer Prevention
个性化息肉切除术后监测以预防结直肠癌
- 批准号:
10734405 - 财政年份:2023
- 资助金额:
$ 49.08万 - 项目类别: