Advanced development of Lancet, an emerging tool for complex variant calling in cancer genomics
柳叶刀的高级开发,一种用于癌症基因组学中复杂变异调用的新兴工具
基本信息
- 批准号:10491232
- 负责人:
- 金额:$ 49.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-20 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAdvanced DevelopmentAlgorithmsBandageBehaviorBloodChromosomesColorCommunitiesComplexComputer softwareDNA sequencingDataDetectionDevelopmentDiseaseDisseminated Malignant NeoplasmDocumentationEngineeringEventEvolutionGenomeGenomic SegmentGoalsGraphHaplotypesJointsKnowledgeLibrariesLinkLongitudinal cohortMalignant NeoplasmsManualsMethodsModelingModernizationMutationPatientsPerformancePhasePlayPrimary NeoplasmPublicationsRelapseResearchResearch PersonnelResolutionRoleSample SizeSamplingSingle Nucleotide PolymorphismSomatic MutationSource CodeStructureTestingThe Cancer Genome AtlasTimeUpdateVariantVisualizationanticancer researchbasecancer cellcancer genomicscancer therapycohortcostdata visualizationdesignexome sequencinggenome analysisgenome sequencinggenome-widehigh throughput analysisimprovedimproved functioninginsertion/deletion mutationlight weightlongitudinal analysisnovel strategiesperformance testsprogramsprototypetooltumortumor progressiontumorigenesisuser-friendlyvariant detectionweb sitewhole genome
项目摘要
ABSTRACT
One of the central challenges in cancer genomics is the ability to accurately detect somatic mutations in
heterogeneous tumors, and precisely determine their clonal origin and evolution. This fundamental knowledge
is central to the discovery of new cancer therapies. In recent years, reductions in the cost of whole-genome and
whole-exome sequencing have enabled researchers to address these questions in unprecedented detail.
However, a major limitation in the field has been a paucity of methods for variant calling that extend beyond
identifying simple single-nucleotide variants (SNVs) and small indels to allow the characterization of complex
structural changes that also play a significant role in tumorigenesis and cancer progression. Indels of more than
a few bases are challenging to discover with typically used alignment-based methods. In addition, most variant
callers analyze tumor and normal data separately, which can introduce false positives such as when a mutation
shows partial support in the normal sample. Towards addressing these shortcomings, we recently introduced
Lancet, a new somatic variant caller developed under the auspices of the ITCR R21. Lancet leverages local
assembly and joint analysis of tumor-normal paired data using region-focused colored de Bruijn graphs, with on-
the-fly repeat composition analysis and a self-tuning k-mer strategy. This results in relatively reduced reference
bias; an improved ability to detect variations that significantly diverge from the reference chromosome
representations; a reduction in the scale of the analysis, leading to increased power and sensitivity to detect
variants through localized, comprehensive graph exploration; and dynamic adjustment of calling behavior
according to the sequence conditions of each genomic region. In testing, Lancet shows superior performance to
all major alignment-based methods in terms of accuracy, particularly in the detection of ‘twilight zone’ indels (30-
250 bp). Given its continued adoption and successful application in over a dozen high-impact publications,
Lancet is poised for more advanced development to enable continued improvements in its variant calling power,
precision, and analytical capabilities. Specifically, Lancet is currently limited by longer runtimes than alignment-
based methods, reduced sensitivity for longer insertions, lack of interactive visualization of the colored de Bruijn
graph, and the inability to jointly analyze longitudinal data. To address these limitations, we propose the following
Specific Aims: 1) Increase computational performance and facilitate user adoption and third-party development;
2) Add new features and enhancements to improve variant detection, phasing, and data visualization; and 3)
Enable joint assembly and analysis of longitudinal data. Impact: With additional development, the next iteration
of Lancet will feature advanced algorithms for fast, efficient, accurate, localized, user-friendly, and application-
modifiable variant analysis of phased genome-wide timeseries data, establishing it as one of the leading methods
for variant calling in cancer research.
摘要
癌症基因组学的核心挑战之一是准确检测细胞突变的能力
异质性肿瘤,并精确地确定其克隆起源和进化。这一基础知识
是发现新的癌症疗法的核心。近年来,全基因组和全基因组成本的降低
整个外显子组测序使研究人员能够以前所未有的细节解决这些问题。
然而,该领域的一个主要限制是缺乏可扩展的变量调用方法
识别简单单核苷酸变异体(SNV)和小INDELs,以便对复合体进行表征
结构变化在肿瘤发生和癌症进展中也起着重要作用。INDELS超过
使用通常使用的基于比对的方法来发现一些碱基是具有挑战性的。此外,大多数变种
呼叫者分别分析肿瘤和正常数据,这可能会导致假阳性,例如当突变时
显示了正常样本中的部分支持。为了解决这些缺点,我们最近推出了
Lancet是在ITCR R21的支持下发展起来的一个新的体细胞变异愈伤组织。《柳叶刀》利用当地
用区域聚焦彩色de Bruijn图组装和联合分析肿瘤-正常配对数据
Fly-Repeat成分分析和自校正k-mer策略。这会导致相对较少的引用
偏倚;检测显著偏离参考染色体的变异的改进能力
表示;分析规模的缩小,导致检测能力和灵敏度的提高
通过本地化、全面的图形探索实现变体;以及动态调整调用行为
根据各基因组区域的测序情况进行编码。在测试中,Lancet显示出优于
在准确性方面,所有主要的基于比对的方法,特别是在检测‘暮光地带’INDELS(30-
250个碱基)。鉴于其在十几种高影响力出版物中的持续采用和成功应用,
Lancet准备进行更高级的开发,以实现其变体调用能力的持续改进,
精确度和分析能力。具体地说,Lancet目前受到运行时间比Align更长的限制-
基于方法,对较长插入的敏感度降低,缺乏彩色De Bruijn的交互可视化
图表,以及无法联合分析纵向数据。为了解决这些限制,我们提出了以下建议
具体目标:1)提高计算性能,促进用户采用和第三方开发;
2)添加新功能和增强功能,以改进变异检测、阶段化和数据可视化;以及3)
启用接头装配和纵向数据分析。影响:随着进一步的开发,下一次迭代
将采用先进的算法,实现快速、高效、准确、本地化、用户友好和应用程序-
对阶段性全基因组时间序列数据进行可修改的变异分析,将其确立为主导方法之一
癌症研究中的变种呼唤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giuseppe Narzisi其他文献
Giuseppe Narzisi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Giuseppe Narzisi', 18)}}的其他基金
Advanced development of Lancet, an emerging tool for complex variant calling in cancer genomics
柳叶刀的高级开发,一种用于癌症基因组学中复杂变异调用的新兴工具
- 批准号:
10304730 - 财政年份:2021
- 资助金额:
$ 49.08万 - 项目类别:
Advanced development of Lancet, an emerging tool for complex variant calling in cancer genomics
柳叶刀的高级开发,一种用于癌症基因组学中复杂变异调用的新兴工具
- 批准号:
10697390 - 财政年份:2021
- 资助金额:
$ 49.08万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 49.08万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 49.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 49.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 49.08万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 49.08万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 49.08万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 49.08万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 49.08万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 49.08万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 49.08万 - 项目类别:
Standard Grant














{{item.name}}会员




