Mechanisms of Thin Filament Regulation by Myosin Binding Protein-C
肌球蛋白结合蛋白-C 调节细丝的机制
基本信息
- 批准号:10306335
- 负责人:
- 金额:$ 55.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-17 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseActinsAffectAgonistAmino AcidsBindingBiological AssayCardiacCardiac MyosinsCardiac healthChronicComplexContractsCryoelectron MicroscopyDataDiastoleDiseaseDissociationFutureGenerationsGenesGoalsHeartHeart DiseasesHeart failureHypertrophic CardiomyopathyIn SituIndividualInvertebratesLightMapsMechanicsMediatingMethodsModelingMolecularMuscleMuscle ContractionMutateMutationMyocardial ContractionMyocardial IschemiaMyosin ATPaseMyosin Alkali Light ChainsMyosin Regulatory Light ChainsN-terminalPaste substancePersonsPhosphorylationPositioning AttributePower strokePrevalenceProteinsPublishingRegulationRelaxationResourcesSarcomeresSerineSignal PathwaySpeedStimulusStructureSurfaceSystoleTestingThickThick FilamentThin FilamentTimeTropomyosinWorkbasecardioprotectionexperimental studyfallsfightinggenetic regulatory proteinheart functioninnovationmouse modelmyosin-binding protein Cnovelpredictive modelingreconstructionresponsesudden cardiac death
项目摘要
ABSTRACT
Cardiac myosin binding protein-C (cMyBP-C) is an essential regulator of heart function that is
necessary for normal systolic and diastolic heart function and for enhanced contractility in response to inotropic
agonists that phosphorylate cMyBP-C through numerous signaling pathways. Whereas phosphorylation is
associated with cardiac protection, hypo-phosphorylation is consistently found in heart failure. Mutations in
MYBPC3, the gene encoding cMyBP-C, are also the most common cause of hypertrophic cardiomyopathy
(HCM), a disease with a prevalence of ~1:500. However, despite its significance to cardiac health and disease,
there is still remarkably little known regarding how cMyBP-C mediates its functional effects or how cMyBP-C
phosphorylation increases cardiac contractility in response to inotropic stimuli. Work from our 3 labs has shown
unequivocally that cMyBP-C directly activates the thin filament in muscle sarcomeres in the same way as
myosin cross-bridges. Our data thus demonstrate cMyBP-C effects to augment contraction or delay relaxation
are due to direct effects of cMyBP-C to shift tropomyosin to an activated state on the thin filament. Here we
take advantage of the revolution in cryo-EM to reveal detailed structures of cMyBP-C interactions with the thin
filament and also with myosin-S1 for the first time. We will use cryo-EM reconstructions to identify key residues
that mediate interactions with thin filaments and myosin-S1 and will test model predictions using an arsenal of
functional approaches including a novel (“Spy-C”) method developed exclusively in our labs that allow us to
replace the N'-terminal domains of cMyBP-C in sarcomeres in situ. Using our structural maps, we demonstrate
proof of principle by identifying amino acids responsible for cMyBP-C activation of tropomyosin and show that
phosphorylation causes cMyBP-C domains to reposition on the thin filament. Specific aims will build on these
discoveries and combine our unique resources to: 1) Determine how individual cMyBP-C domains
communicate with neighboring domains when bound to the thin filament and myosin-S1, and 2) Define how
Ca2+ and phosphorylation modulate key regulatory interactions of cMyBP-C with the thin filament and myosin-
S1. By identifying the critical molecular interactions that control cMyBP-C binding to the thin filament and
myosin-S1 these studies will pave the way for future targeted approaches to modulate cardiac contraction and
relaxation.
摘要
心肌肌球蛋白结合蛋白-C(cMyBP-C)是心脏功能的重要调节因子,即
对正常的收缩和舒张期心脏功能以及对变力反应增强的收缩能力是必需的
通过许多信号通路使cMyBP-C磷酸化的激动剂。而磷酸化是
低磷酸化与心脏保护有关,在心力衰竭中一直被发现。基因突变
编码cMyBP-C的MYBPC3基因也是肥厚型心肌病最常见的原因
(HCM),一种患病率约为1:500的疾病。然而,尽管它对心脏健康和疾病具有重要意义,
关于cMyBP-C如何介导其功能效应或cMyBP-C如何发挥作用,人们仍然知之甚少。
磷酸化可增加心肌对变力刺激的收缩能力。我们3个实验室的工作表明
毫无疑问,cMyBP-C直接激活肌肉肌节中的细丝的方式与
肌球蛋白跨越桥梁。因此,我们的数据显示cMyBP-C作用于增强收缩或延迟松弛
是由于cMyBP-C将原肌球蛋白转移到细丝上的激活状态的直接作用。在这里我们
利用低温电子显微镜的革命来揭示cMyBP-C与Thin相互作用的详细结构
细丝和肌球蛋白-S1也是首次发现。我们将使用冷冻-EM重建来确定关键残留物
它调节与细丝和肌球蛋白-S1的相互作用,并将使用
功能性方法,包括一种由我们的实验室独家开发的新型(“Spy-C”)方法,它使我们能够
在肌瘤中原位替换cMyBP-C的N‘末端结构域。使用我们的结构图,我们演示了
通过确定负责原肌球蛋白cMyBP-C激活的氨基酸来证明原理,并表明
磷酸化导致cMyBP-C结构域在细丝上重新定位。具体目标将建立在这些基础上
发现并结合我们独特的资源以:1)确定单个cMyBP-C结构域如何
当与细丝和肌球蛋白-S1结合时,与相邻结构域进行通信,以及2)定义如何
钙离子和磷酸化调节cMyBP-C与细丝和肌球蛋白的关键调控相互作用
S1。通过鉴定控制cMyBP-C与细丝结合的关键分子相互作用
肌球蛋白-S1这些研究将为未来的靶向方法调节心脏收缩和
放松一下。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vitold Galkin其他文献
Vitold Galkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vitold Galkin', 18)}}的其他基金
REGULATION OF THE ACTIN FILAMENT POINTED END DYNAMICS IN HEALTH AND DISEASE
健康和疾病中肌动蛋白丝尖头动力学的调节
- 批准号:
10810153 - 财政年份:2017
- 资助金额:
$ 55.95万 - 项目类别:
REGULATION OF THE ACTIN FILAMENT POINTED END DYNAMICS IN HEALTH AND DISEASE
健康和疾病中肌动蛋白丝尖头动力学的调节
- 批准号:
10687109 - 财政年份:2017
- 资助金额:
$ 55.95万 - 项目类别:
UVA molecular electron microscopy core for the Mid-Atlantic region
大西洋中部地区的 UVA 分子电子显微镜核心
- 批准号:
10023265 - 财政年份:2017
- 资助金额:
$ 55.95万 - 项目类别:
UVA molecular electron microscopy core for the Mid-Atlantic region
大西洋中部地区的 UVA 分子电子显微镜核心
- 批准号:
9548722 - 财政年份:2017
- 资助金额:
$ 55.95万 - 项目类别:
UVA molecular electron microscopy core for the Mid-Atlantic region
大西洋中部地区的 UVA 分子电子显微镜核心
- 批准号:
10263352 - 财政年份:2017
- 资助金额:
$ 55.95万 - 项目类别:
REGULATION OF THE ACTIN FILAMENT POINTED END DYNAMICS IN HEALTH AND DISEASE
健康和疾病中肌动蛋白丝尖头动力学的调节
- 批准号:
10296898 - 财政年份:2017
- 资助金额:
$ 55.95万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 55.95万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 55.95万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 55.95万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 55.95万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 55.95万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 55.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 55.95万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 55.95万 - 项目类别:














{{item.name}}会员




