Mechanisms of seizure resistance in a mouse genetic model with altered metabolism

代谢改变的小鼠遗传模型的癫痫抵抗机制

基本信息

  • 批准号:
    10307554
  • 负责人:
  • 金额:
    $ 38.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Drug-resistant epilepsy is seriously debilitating and very common, affecting about one-third of the 1-2% of people who experience epilepsy during their lifetime. One of the most effective treatments for drug-resistant epilepsy is dietary therapy, in the form of a very-low-carbohydrate, ketogenic diet. Despite its effectiveness, this diet is not very widely used because of the stringency of the diet and the high commitment required of clinicians and other caregivers. It would be very valuable to understand the mechanism by which altered metabolism produces resistance to epileptic seizures, to “reverse-engineer” it, and to discover alternative pharmacologic ways of tapping into this potent and apparently unique anti-seizure mechanism. We have identified a mouse model that recapitulates the seizure resistance seen in ketogenic diet, but that involves a mutation in a single gene, Bad. The seizure resistance in this genetic model is due to alteration in brain cell metabolism, with less glucose utilization and better utilization of alternative fuels such as ketone bodies, similar to the metabolic changes on a ketogenic diet. We have also discovered a downstream mechanism that is altered both by Bad alteration and by ketogenic diet: a metabolically-sensitive class of ion channels, the ATP-sensitive potassium channels (KATP channels), become more activated in response to metabolic changes. These channels are critical for seizure resistance of the Bad-altered mice, and we have also found that they are responsible for anti-seizure effects of BAD knockout in a brain slice model of seizure. We have also recently learned that KATP channel activation depends on the expression of the BAD protein in individual neurons, which means that the effects of BAD can be genetically targeted to individual cell types or to specific brain regions. This ability to target the genetic manipulation of the BAD protein – which cannot be done for a global manipulation like diet – creates the opportunity to learn the cellular sites of action where BAD modification is required to produce seizure resistance. We now have a conditional knockout allele of the Bad gene (Bad flox/flox) that can be used in combination with various “driver lines” that express Cre recombinase in specific cells. We will determine whether BAD knockout is effective in slice seizure models or against seizures in mice, when the knockout is restricted to certain targets, for instance, to neurons in specific brain regions like the dentate gyrus that are hypothesized to function as “seizure gates”. We will also test a pharmacological approach to producing the anti-seizure effects of BAD, by asking whether a specific class of BAD-mimetic compounds is capable of reversing or mimicking the effect of BAD knockout on seizure-like events in slices. These studies will advance our mechanistic understanding of metabolic seizure resistance and more generally of endogenous “seizure gates”, and will explore new pharmacologic approaches to drug-resistant epilepsy.
项目总结/摘要 耐药性癫痫是严重的衰弱和非常常见的,影响约三分之一的1-2%的 癫痫病患者在一生中治疗耐药的最有效的方法之一 癫痫是饮食疗法,以非常低碳水化合物的生酮饮食的形式。尽管它很有效, 这种饮食并没有被广泛使用,因为饮食的严格性和高承诺要求。 临床医生和其他护理人员。了解改变的机制是非常有价值的, 新陈代谢产生对癫痫发作的抵抗力,对其进行“反向工程”,并发现替代方案 药理学方法来利用这种有效的和明显独特的抗癫痫机制。 我们已经确定了一种小鼠模型,该模型重现了生酮饮食中观察到的癫痫发作抵抗,但 都涉及一个单一基因的突变,坏基因这种遗传模型中的癫痫抵抗是由于 脑细胞代谢,葡萄糖利用率更低,替代燃料(如酮)利用率更高 身体,类似于生酮饮食的代谢变化。我们还发现了一个下游 通过不良改变和生酮饮食改变的机制:一类代谢敏感的离子 通道,ATP敏感性钾通道(KATP通道),变得更加活跃,以响应 代谢变化这些通道对于Bad改变小鼠的癫痫抵抗至关重要, 还发现它们负责BAD敲除在癫痫发作的脑切片模型中的抗癫痫发作作用。 我们最近还了解到,KATP通道的激活依赖于BAD蛋白的表达。 单个神经元,这意味着BAD的影响可以在遗传上靶向单个细胞类型, 到特定的大脑区域 这种针对BAD蛋白的遗传操作的能力-这在全球范围内是无法做到的。 操纵,如饮食-创造了机会,以了解细胞的行动地点,其中不良修改 是产生抗癫痫性所必需的。我们现在有一个条件性敲除Bad基因的等位基因 (Bad flox/flox),其可以与表达Cre重组酶的各种“驱动系”组合使用,所述“驱动系”特异性地表达Cre重组酶。 细胞我们将确定BAD基因敲除是否在切片癫痫发作模型或小鼠癫痫发作中有效, 当敲除仅限于某些靶点时,例如,特定脑区的神经元,如 齿状回被假设为“癫痫发作门”。我们还将测试一种药物 一种产生BAD抗癫痫作用的方法,通过询问特定类别的BAD模拟物是否 化合物能够逆转或模拟BAD基因敲除对切片中的类凋亡事件的作用。 这些研究将推进我们对代谢性癫痫抵抗的机制理解, 内源性“癫痫发作门”,并将探索新的药物耐药性癫痫的方法。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle.
  • DOI:
    10.7554/elife.64821
  • 发表时间:
    2021-02-08
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Díaz-García CM;Meyer DJ;Nathwani N;Rahman M;Martínez-François JR;Yellen G
  • 通讯作者:
    Yellen G
Metabolism-based therapies for epilepsy: new directions for future cures.
Fluorescent Biosensors for Neuronal Metabolism and the Challenges of Quantitation.
  • DOI:
    10.1016/j.conb.2020.02.011
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Koveal D;Díaz-García CM;Yellen G
  • 通讯作者:
    Yellen G
Fueling thought: Management of glycolysis and oxidative phosphorylation in neuronal metabolism.
  • DOI:
    10.1083/jcb.201803152
  • 发表时间:
    2018-07-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yellen G
  • 通讯作者:
    Yellen G
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GARY I YELLEN其他文献

GARY I YELLEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GARY I YELLEN', 18)}}的其他基金

Mechanisms of seizure resistance in a mouse genetic model with altered metabolism
代谢改变的小鼠遗传模型的癫痫抵抗机制
  • 批准号:
    10057397
  • 财政年份:
    2018
  • 资助金额:
    $ 38.46万
  • 项目类别:
Mechanisms of Seizure Resistance in a Mouse Genetic Model with Altered Metabolism
代谢改变的小鼠遗传模型中的癫痫发作抵抗机制
  • 批准号:
    10733666
  • 财政年份:
    2018
  • 资助金额:
    $ 38.46万
  • 项目类别:
High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
  • 批准号:
    9362342
  • 财政年份:
    2017
  • 资助金额:
    $ 38.46万
  • 项目类别:
High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
  • 批准号:
    10631997
  • 财政年份:
    2017
  • 资助金额:
    $ 38.46万
  • 项目类别:
High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
  • 批准号:
    9751930
  • 财政年份:
    2017
  • 资助金额:
    $ 38.46万
  • 项目类别:
High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
  • 批准号:
    10364295
  • 财政年份:
    2017
  • 资助金额:
    $ 38.46万
  • 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
  • 批准号:
    8341600
  • 财政年份:
    2012
  • 资助金额:
    $ 38.46万
  • 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
  • 批准号:
    8703697
  • 财政年份:
    2012
  • 资助金额:
    $ 38.46万
  • 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
  • 批准号:
    9116838
  • 财政年份:
    2012
  • 资助金额:
    $ 38.46万
  • 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
  • 批准号:
    8543731
  • 财政年份:
    2012
  • 资助金额:
    $ 38.46万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 38.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了