High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
基本信息
- 批准号:10364295
- 负责人:
- 金额:$ 33.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:Acetyl Coenzyme AAddressAdoptedBathingBinding ProteinsBinding SitesBiochemicalBiochemical ProcessBiochemistryBiological AssayBiosensorCellsCellular Metabolic ProcessChemical DynamicsChemicalsCoenzyme ACollectionColorComputing MethodologiesDNADNA SequenceDataDevelopmentDiseaseDoseEnzymatic BiochemistryEventExposure toFamilyFluorescenceGelGenerationsGeneticGenotypeGlucoseGoalsGrantGreen Fluorescent ProteinsHomodimerizationImageIndividualJellyfishLibrariesMalonyl Coenzyme AMass Spectrum AnalysisMeasurementMeasuresMetabolicMethodsMicrofluidicsMicroscopePhenotypeProcessProductionProteinsPublicationsPublishingReporterResistanceResolutionSecond Messenger SystemsSensitivity and SpecificitySeriesSignal TransductionSite-Directed MutagenesisSorting - Cell MovementSpecificityTechnologyTestingTimeValidationVariantacetoacetyl CoAbasecell behaviorchemical reactiondesigndimerglucose sensorhigh throughput screeningimprovedinsightinterestmachine learning methodmicrobialmicroscopic imagingmovienext generation sequencingnovelprototypepublic health relevanceresponsescaffoldscreeningsensorsuccesstemporal measurementtooltranscription factor
项目摘要
ABSTRACT
Genetically encoded fluorescent biosensors are powerful tools that allow the tracking of chemical events inside
living cells, in real time. Even with a detailed understanding of biochemistry, enzymology, regulatory signaling,
and genetics, there is no substitute for direct empirical information about the dynamics of chemical processes
and signaling in cells. Unlike most biochemical measurements, the biosensors can provide spatial resolution at
the level of single cells or parts of cells, and temporal resolution of seconds (or better). Nevertheless, there are
major gaps in our ability to follow the details of cell signaling or metabolism using biosensors. For many
interesting biochemical processes, we have no biosensors for the key metabolites. And even when a biosensor
exists, it may not have the right sensitivity and specificity required for observing the desired process, or it may
have sensitivity to pH or other environmental parameters that can mislead the experimenters.
Biosensors are constructed by combining a fluorescent protein (like the jellyfish green fluorescent protein, GFP)
with a binding protein for the chemical of interest. But finding the right way to combine the proteins is challenging,
and even with a well-reasoned design, getting a biosensor with a strong, specific, and robust signal requires a
large amount of optimization. This optimization is done by screening targeted random libraries of sensor variants.
Current methods are typically limited to processing hundreds of variants per day, usually with just a single pair
of measurements to guide selection of a variant for further validation.
In the previous grant period, we developed a high-throughput, high-content screening pipeline that can
screen thousands to tens of thousands of variants in a day, selecting “winners” based on detailed dose-response
and selectivity data. Our approach uses microfluidic encapsulation of both DNA and protein for each variant in
a small, semipermeable bead, followed by automated microscope imaging of thousands of beads under a series
of conditions (varying [analyte], other test compounds, pH, etc.). This screen will permit thorough optimization
of sensors and will allow success in otherwise failed sensor projects.
We propose to use the new screening method to optimize some existing sensors (e.g., glucose and ATP:ADP
ratio) and sensor prototypes (e.g., lactate and malonyl-CoA). We will also optimize a new general strategy for
constructing sensors from dimeric transcription factors (a large family of microbial proteins useful for sensing),
and we will exploit the high throughput of the screen in concert with computational methods to change the binding
site specificity of existing sensors to produce sensors for important metabolic target molecules.
In parallel, we will make improvements in the screening pipeline to expand its reach, with the goals of substan-
tially increasing efficiency and throughput, and of recovering genotype information on a large number of pheno-
typed sensor variants. These advances can dramatically improve the development of novel and improved
biosensors, as well as other tools for the study and manipulation of chemical processes in living cells.
摘要
遗传编码荧光生物传感器是一种强大的工具,可以跟踪内部的化学事件
活细胞,在真实的时间里。即使对生物化学,酶学,调节信号有了详细的了解,
和遗传学,没有任何东西可以替代关于化学过程动力学的直接经验信息
和细胞中的信号。与大多数生化测量不同,生物传感器可以提供空间分辨率,
单个细胞或部分细胞的水平,以及秒(或更好)的时间分辨率。然而,
我们使用生物传感器跟踪细胞信号或代谢细节的能力存在重大差距。对于许多
有趣的生化过程,我们没有关键代谢物的生物传感器。即使生物传感器
存在,它可能不具有观察所需过程所需的正确灵敏度和特异性,或者它可能
对pH值或其他可能误导实验者的环境参数敏感。
生物传感器是通过结合荧光蛋白(如水母绿色荧光蛋白,GFP)
与目标化学物质的结合蛋白结合但是找到正确的方法来联合收割机的蛋白质是具有挑战性的,
即使有合理的设计,获得具有强,特异性和鲁棒信号的生物传感器也需要
大量的优化。这种优化是通过筛选传感器变体的靶向随机文库来完成的。
目前的方法通常仅限于每天处理数百个变体,通常只有一对
以指导选择变体进行进一步验证。
在上一个资助期,我们开发了一个高通量、高内容的筛选管道,
在一天内筛选数千到数万种变异,根据详细的剂量反应选择“优胜者”
和选择性数据。我们的方法使用微流体封装的DNA和蛋白质的每一个变种,
一个小的,半渗透性的珠子,然后在一系列的自动显微镜下对数千个珠子进行成像。
条件(变化[分析物]、其他供试化合物、pH值等)。此屏幕将允许彻底优化
传感器,并将允许成功,否则失败的传感器项目。
我们建议使用新的筛选方法来优化一些现有的传感器(例如,葡萄糖和ATP:ADP
比率)和传感器原型(例如,乳酸盐和丙二酰辅酶A)。我们还将优化新的总体战略,
从二聚体转录因子(用于传感的微生物蛋白质的大家族)构建传感器,
我们将利用筛选的高通量与计算方法来改变结合
现有传感器的位点特异性以产生用于重要代谢靶分子的传感器。
与此同时,我们将改进筛查渠道,扩大其覆盖范围,目标是实现实质性进展。
从而提高效率和通量,并恢复大量表型的基因型信息,
类型的传感器变体。这些进步可以大大提高新的和改进的发展,
生物传感器,以及用于研究和操纵活细胞中的化学过程的其他工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GARY I YELLEN其他文献
GARY I YELLEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GARY I YELLEN', 18)}}的其他基金
Mechanisms of seizure resistance in a mouse genetic model with altered metabolism
代谢改变的小鼠遗传模型的癫痫抵抗机制
- 批准号:
10057397 - 财政年份:2018
- 资助金额:
$ 33.89万 - 项目类别:
Mechanisms of Seizure Resistance in a Mouse Genetic Model with Altered Metabolism
代谢改变的小鼠遗传模型中的癫痫发作抵抗机制
- 批准号:
10733666 - 财政年份:2018
- 资助金额:
$ 33.89万 - 项目类别:
Mechanisms of seizure resistance in a mouse genetic model with altered metabolism
代谢改变的小鼠遗传模型的癫痫抵抗机制
- 批准号:
10307554 - 财政年份:2018
- 资助金额:
$ 33.89万 - 项目类别:
High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
- 批准号:
9362342 - 财政年份:2017
- 资助金额:
$ 33.89万 - 项目类别:
High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
- 批准号:
10631997 - 财政年份:2017
- 资助金额:
$ 33.89万 - 项目类别:
High-throughput optimization of genetically-encoded fluorescent biosensors
基因编码荧光生物传感器的高通量优化
- 批准号:
9751930 - 财政年份:2017
- 资助金额:
$ 33.89万 - 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
- 批准号:
8341600 - 财政年份:2012
- 资助金额:
$ 33.89万 - 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
- 批准号:
8703697 - 财政年份:2012
- 资助金额:
$ 33.89万 - 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
- 批准号:
9116838 - 财政年份:2012
- 资助金额:
$ 33.89万 - 项目类别:
Single cell analysis of metabolism using genetically-encoded fluorescent sensors
使用基因编码荧光传感器进行代谢的单细胞分析
- 批准号:
8543731 - 财政年份:2012
- 资助金额:
$ 33.89万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 33.89万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 33.89万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 33.89万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 33.89万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 33.89万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 33.89万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 33.89万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 33.89万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 33.89万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 33.89万 - 项目类别:
Research Grant














{{item.name}}会员




