NANOPHOTOSENSITIZERS FOR REGENERATIVE PHOTOTHERAPY
用于再生光疗的纳米光敏剂
基本信息
- 批准号:10317997
- 负责人:
- 金额:$ 70.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-04 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:Adrenal Cortex HormonesAffectAwardBindingBiologicalBiological AvailabilityBone MarrowBone MatrixBortezomibCAR T cell therapyCarbonCell DeathCellsCherenkov RadiationClinical TreatmentClonal ExpansionCombined Modality TherapyComplementComplexCoupledDataDiseaseDisease-Free SurvivalDoseDrug Delivery SystemsDrug resistanceEncapsulatedEngineeringEnvironmentEventExhibitsFluorineFractureFundingGlucose TransporterGrantHematologic NeoplasmsHematopoietic NeoplasmsHigh Dose ChemotherapyHumanHypoxiaImageImmunomodulatorsImmunosuppressionInterventionIntravenousLesionLightLipidsLiverLungMalignant - descriptorMalignant Bone NeoplasmMalignant NeoplasmsMediatingMedicalMedicineMetalsMethodsMolecularMonoclonal AntibodiesMultiple MyelomaNanotechnologyNatural regenerationNucleic AcidsOrganellesOsteolysisOutcomeOxidation-ReductionOxygenPathway interactionsPatientsPenetrationPeripheral Nervous System DiseasesPharmaceutical PreparationsPhotosensitizing AgentsPhototherapyPlasmaProcessProdrugsProductionProgression-Free SurvivalsPropertyProteasome InhibitorProteinsQuality of lifeQuantum DotsRadioisotopesRadiolabeledRadiopharmaceuticalsReactive Oxygen SpeciesRelapseResearchResidual TumorsResistanceScienceSeminalSignal PathwaySiteSolid NeoplasmSourceSpleenStromal CellsSupporting CellSurfaceTechnologyTestingTherapeuticTherapeutic EffectThrombocytopeniaTissuesToxic effectTransducersTransferrinTreatment outcomeUltraviolet Raysabsorptionbasebonecancer cellcancer imagingcancer therapychemotherapyclinically translatablecytotoxiceffective therapyfield studyfluorodeoxyglucosehuman diseaseimaging agentimprovedin vivonanonanomaterialsnanomedicinenanoparticlenanoparticle deliverynanoscalenanosciencenanotechnology platformnanotherapyneurotoxicitynovelpreventregenerativerelapse patientsside effectspatiotemporalstemsystemic toxicitytherapy outcometitanium dioxidetitanocenetreatment responsetreatment strategytumortumor growth
项目摘要
ABSTRACT
The excitement about nanomedicine stems from the potential application of nanoscience to solve
challenging medical problems. Inorganic nanoparticles (iNPs) exhibit unique properties that favor their diverse
application in medicine, engineering, science, and technology. The large surface-to-volume ratio of these iNPs
provides sites for the attachment of multiple drugs or imaging agents for therapy and imaging of diverse human
diseases. Further conjugation of biological entities, such as proteins, nucleic acids, and lipids, confers specific
targeting of these iNPs to desired tissues in vivo. Recent studies have shown that the intrinsic properties of some
iNPs can be harnessed for therapeutic outcomes. Still, spontaneous stimulation of intrinsic therapeutic effects
through interactions of the NPs with intracellular organelles, proteins, or molecular processes is difficult to
control, leading to significant off-target toxicity. An alternative therapeutic approach is to transform some iNPs
into nanoscale energy transducers. Quantum dots, upconversion NPs, carbon nanomaterials, and photocatalytic
NPs are some nanoscale energy transducers that have shown promise in the treatment of human diseases. The
excellent redox properties of these nanophotosensitizers offer high spatiotemporal control and precision
phototherapy upon absorption of light. Two major limitations of current phototherapeutic interventions are the
limited penetration of light used to activate the photosensitizers, which confines therapy to shallow lesions, and
the frequent reliance on molecular oxygen to generate cytotoxic reactive oxygen species, a condition that
precludes the effective treatment under the hypoxic conditions found in many solid and hematologic tumors.
Recently, we developed radionuclide stimulated therapy that leverages the interaction of Cerenkov radiation
emitting radionuclides to stimulate the production of reactive oxygen species from photosensitizers. The
spatiotemporal therapeutic effects of these interactions allow the treatment of diverse diseases without tissue
depth limitation that affects light-based therapies. Supported by new concepts grounded in robust preliminary
data, we propose to (1) explore new nanostrategies to overcome the impediment to delivering NPs to tumors,
(2) disrupt the protective interactions of cancer with stromal cells to enhance treatment response, and (3) exert
sustainable therapeutic effect via multidimensional combination therapy to achieve disease-free survival.
At the completion of this study, we would develop new nanoplatforms for the treatment and imaging of cancer
and bone lesions.
摘要
对纳米医学的兴奋源于纳米科学在解决
挑战医学问题。无机纳米颗粒(INP)表现出独特的性质,有利于其多样化
在医学、工程、科学和技术方面的应用。这些INP的大表面积体积比
提供多种药物或显像剂的附着点,用于治疗和成像不同的人类
疾病。生物实体的进一步结合,如蛋白质、核酸和脂类,赋予特定的
在体内将这些INPS靶向所需的组织。最近的研究表明,一些生物的内在属性
INPS可用于治疗效果。尽管如此,内在疗效的自发刺激
通过NPs与细胞内细胞器、蛋白质或分子过程的相互作用,很难
控制,导致严重的脱靶毒性。另一种治疗方法是将一些INP
变成纳米级的能量传感器。量子点、上转换纳米粒子、碳纳米材料和光催化
NPS是一些纳米级的能量换能器,在治疗人类疾病方面显示出了希望。这个
这些纳米光敏剂优异的氧化还原性能提供了高时空控制和精确度
光吸收后的光疗。当前光疗干预的两个主要局限性是
用于激活光敏剂的光的穿透性有限,这将治疗限制在浅层皮损,以及
经常依赖分子氧来产生细胞毒性的活性氧物种,这种情况
排除了在许多实体和血液肿瘤中发现的低氧条件下的有效治疗。
最近,我们开发了利用切伦科夫辐射相互作用的放射性核素刺激疗法。
放出放射性核素以刺激光敏剂产生活性氧物种。这个
这些相互作用的时空治疗效应允许在没有组织的情况下治疗各种疾病
影响光疗法的深度限制。以稳健的初步研究为基础的新概念的支持
数据,我们建议(1)探索新的纳米战略,以克服向肿瘤输送NPs的障碍,
(2)破坏肿瘤与基质细胞的保护性相互作用,以增强治疗反应;(3)发挥
通过多维联合治疗获得可持续的治疗效果,以实现无病生存。
在这项研究完成后,我们将开发新的纳米平台用于癌症的治疗和成像
和骨骼损伤。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Samuel Achilefu其他文献
Samuel Achilefu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Samuel Achilefu', 18)}}的其他基金
Imaging Goggles for Fluorescence-Guided Surgery
用于荧光引导手术的成像护目镜
- 批准号:
10631237 - 财政年份:2022
- 资助金额:
$ 70.85万 - 项目类别:
Imaging Goggles for Fluorescence-Guided Surgery
用于荧光引导手术的成像护目镜
- 批准号:
10609673 - 财政年份:2022
- 资助金额:
$ 70.85万 - 项目类别:
NANOPHOTOSENSITIZERS FOR REGENERATIVE PHOTOTHERAPY
用于再生光疗的纳米光敏剂
- 批准号:
10596383 - 财政年份:2021
- 资助金额:
$ 70.85万 - 项目类别:
NANOPHOTOSENSITIZERS FOR REGENERATIVE PHOTOTHERAPY
用于再生光疗的纳米光敏剂
- 批准号:
10461894 - 财政年份:2021
- 资助金额:
$ 70.85万 - 项目类别:
NANOPHOTOSENSITIZERS FOR REGENERATIVE PHOTOTHERAPY OF TUMORS
用于肿瘤再生光疗的纳米光敏剂
- 批准号:
10164004 - 财政年份:2020
- 资助金额:
$ 70.85万 - 项目类别:
Washington University Human Tumor Atlas Research Center
华盛顿大学人类肿瘤图谱研究中心
- 批准号:
9788364 - 财政年份:2018
- 资助金额:
$ 70.85万 - 项目类别:
Washington University Human Tumor Atlas Research Center
华盛顿大学人类肿瘤图谱研究中心
- 批准号:
10461041 - 财政年份:2018
- 资助金额:
$ 70.85万 - 项目类别:
Washington University Human Tumor Atlas Research Center
华盛顿大学人类肿瘤图谱研究中心
- 批准号:
10242181 - 财政年份:2018
- 资助金额:
$ 70.85万 - 项目类别:
Training OPportunities in Translational Imaging Education and Research (TOP-TIER)
转化成像教育和研究的培训机会(顶级)
- 批准号:
9279570 - 财政年份:2017
- 资助金额:
$ 70.85万 - 项目类别:
Training OPportunities in Translational Imaging Education and Research (TOP-TIER)
转化成像教育和研究的培训机会(顶级)
- 批准号:
10245164 - 财政年份:2017
- 资助金额:
$ 70.85万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 70.85万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 70.85万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 70.85万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 70.85万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 70.85万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 70.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 70.85万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 70.85万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 70.85万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 70.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists