Mechanoregulation of cytotoxic lymphocyte function
细胞毒性淋巴细胞功能的机械调节
基本信息
- 批准号:10316830
- 负责人:
- 金额:$ 59.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-15 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:ActinsAddressAdhesionsAtomic Force MicroscopyAutomobile DrivingBiochemicalBiological ModelsBiomedical EngineeringBiophysicsCell DeathCell membraneCell physiologyCell-Mediated CytolysisCellsCellular biologyClinicClinical DataCollaborationsCouplingCytoplasmCytotoxic T-LymphocytesDataDimensionsDiseaseDisseminated Malignant NeoplasmExertionExtracellular SpaceGeneticGranzymeHealthHumanImageImmuneImmune TargetingImmune responseImmunityImmunologic SurveillanceImmunological ModelsImmunotherapeutic agentImmunotherapyIn VitroIntegrinsIntercellular JunctionsInvadedKnowledgeLicensingLymphocyteLymphocyte ActivationLymphocyte FunctionLymphocyte SubsetMalignant NeoplasmsMechanicsMediatingMethodsMissionModelingMolecularMusNeoplasm MetastasisOutputPeptide HydrolasesPhysical activityPhysiologicalPositioning AttributeProcessPropertyPuncture procedureResolutionRoleScientistShapesSignal TransductionSpecificityStereotypingSurfaceSynapsesT-Lymphocyte and Natural Killer CellTimeTo specifyTumor ImmunityUnited States National Institutes of HealthVDAC1 geneVirusWorkbasebiophysical techniquescancer cellcancer immunotherapycell killingcytotoxiccytotoxicityfightinghigh resolution imagingimmune activationimmune functionimmunological synapseimmunotherapy clinical trialsimprovedin vivoinnovationintercellular communicationinterdisciplinary approachlight microscopyloss of functionmaterials sciencemechanical forcemechanical propertiesmechanotransductionmouse modelmyocardinnovelpathogenperforinresponsesynaptic functionsynergismtranscription factortumor
项目摘要
Summary
Immune cells communicate through dynamic cell-cell junctions known as immune synapses. Although the
biochemical properties of these synapses have been studied extensively, we know little about their mechanical
activities and how these activities contribute to immune function. We use cytotoxic lymphocytes as a model
system to investigate the origins and purposes of synaptic force. Cytotoxic lymphocytes fight pathogens and
cancer by forming an immune synapse with an infected or transformed target cell and then secreting toxic
granzymes and the pore forming protein perforin into the intercellular space. Work from our lab and others
suggests critical roles for mechanical forces both in triggering lymphocyte activation and in enhancing the
efficiency of killing responses. Our proposed studies, which are divided into two Specific Aims, will address the
functional relevance and molecular bases of synaptic force in these contexts. Aim 1 builds on preliminary data
indicating that cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells detect the physical stiffening of
target cells and use this mechanosensing capacity to identify and destroy cancer cells invading the metastatic
niche. To determine if and how this mechanical form of immunosurveillance, which we call
mechanosurveillance, shapes anti-tumor immunity in vivo, we will apply multiple murine metastasis models,
atomic force microscopy, and analysis of clinical immunotherapy trials. Aim 2 is premised on prior work
indicating that CTLs use mechanical force to potentiate the pore forming activity of secreted perforin. This sort
of physicochemical synergy demands a high degree of coordination between mechanical and secretory output
within the synapse, but how lymphocytes achieve this coupling remains unknown. We have developed an
imaging-based biophysical approach to address this problem, which will enable us to establish the
mechanochemical choreography of cytotoxicity with unprecedented precision. Our proposed studies will
employ technically innovative methods, including super-resolution imaging of lymphocyte force exertion against
micron-scale biophysical probes. They will also introduce a number of innovative concepts, including the idea
that cellular rigidity can trigger immunosurveillance and the idea that lymphocyte subsets employ distinct
mechanical signatures to specify their effector responses. Our work will also address a simple but technically
vexing issue that has constrained the field for some time, namely whether mechanobiological principles
actually influence immunity in vivo. Understanding the biophysical dimensions of immune synapse function
could potentially reveal new strategies for the modulation and assessment of lymphocyte activity in the clinic.
As such, the studies described herein are highly relevant to the NIH mission in that they will contribute to the
advancement of knowledge that could improve human health.
总结
免疫细胞通过称为免疫突触的动态细胞-细胞连接进行通信。虽然
这些突触的生化特性已经被广泛研究,我们对它们的机械特性知之甚少。
活动以及这些活动如何促进免疫功能。我们使用细胞毒性淋巴细胞作为模型
系统来研究突触力的起源和目的。细胞毒性淋巴细胞对抗病原体,
通过与受感染或转化的靶细胞形成免疫突触,然后分泌毒素
颗粒酶和孔形成蛋白穿孔素进入细胞间隙。我们实验室和其他人的工作
提示机械力在触发淋巴细胞活化和增强淋巴细胞增殖中的关键作用。
杀人反应的效率。我们建议的研究分为两个具体目标,
功能相关性和突触力的分子基础。目标1建立在初步数据的基础上
表明细胞毒性T淋巴细胞(CTL)和自然杀伤(NK)细胞检测到的身体硬化,
靶向细胞,并使用这种机械感应能力来识别和破坏侵入转移性肿瘤的癌细胞。
利基为了确定这种我们称之为免疫监视的机械形式,
机械监视,在体内形成抗肿瘤免疫,我们将应用多种鼠转移模型,
原子力显微镜和临床免疫治疗试验分析。目标2是在先前工作的基础上制定的
表明CTL使用机械力来增强分泌的穿孔素的成孔活性。这种
的物理化学协同作用需要机械和分泌输出之间的高度协调
在突触内,但淋巴细胞如何实现这种耦合仍然是未知的。我们已经开发了一个
基于成像的生物物理方法来解决这个问题,这将使我们能够建立
以前所未有的精确度对细胞毒性进行机械化学编排。我们建议的研究将
采用技术创新的方法,包括淋巴细胞作用力的超分辨率成像,
微米尺度的生物物理探针。他们还将引入一些创新概念,包括
细胞的刚性可以触发免疫监视,淋巴细胞亚群采用不同的
机械签名来指定它们的效应器响应。我们的工作还将解决一个简单但技术上
一段时间以来,这是一个困扰该领域的问题,即机械生物学原理是否
实际上会影响体内免疫力。了解免疫突触功能的生物物理学维度
可能揭示临床上调节和评估淋巴细胞活性的新策略。
因此,本文所述的研究与NIH的使命高度相关,因为它们将有助于
知识的进步可以改善人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morgan A Huse其他文献
Morgan A Huse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Morgan A Huse', 18)}}的其他基金
Architectural regulation of cytotoxic synapse detachment
细胞毒性突触脱离的结构调节
- 批准号:
10579319 - 财政年份:2022
- 资助金额:
$ 59.01万 - 项目类别:
Architectural regulation of cytotoxic synapse detachment
细胞毒性突触脱离的结构调节
- 批准号:
10467438 - 财政年份:2022
- 资助金额:
$ 59.01万 - 项目类别:
Mechanistic Analysis of T Cell Polarity by Photoactivation of Single Cells
单细胞光活化 T 细胞极性的机制分析
- 批准号:
8214512 - 财政年份:2010
- 资助金额:
$ 59.01万 - 项目类别:
Mechanoregulation of cytotoxic lymphocyte function
细胞毒性淋巴细胞功能的机械调节
- 批准号:
10646310 - 财政年份:2010
- 资助金额:
$ 59.01万 - 项目类别:
Synaptic Control of Cytotoxic T cell Function
细胞毒性 T 细胞功能的突触控制
- 批准号:
9187404 - 财政年份:2010
- 资助金额:
$ 59.01万 - 项目类别:
Mechanistic Analysis of T Cell Polarity by Photoactivation of Single Cells
单细胞光活化 T 细胞极性的机制分析
- 批准号:
8019098 - 财政年份:2010
- 资助金额:
$ 59.01万 - 项目类别:
Mechanistic Analysis of T Cell Polarity by Photoactivation of Single Cells
单细胞光活化 T 细胞极性的机制分析
- 批准号:
8604669 - 财政年份:2010
- 资助金额:
$ 59.01万 - 项目类别:
Mechanistic Analysis of T Cell Polarity by Photoactivation of Single Cells
单细胞光活化 T 细胞极性的机制分析
- 批准号:
7861930 - 财政年份:2010
- 资助金额:
$ 59.01万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 59.01万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 59.01万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 59.01万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 59.01万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 59.01万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 59.01万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 59.01万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 59.01万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 59.01万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 59.01万 - 项目类别:
Research Grant