Architectural regulation of cytotoxic synapse detachment
细胞毒性突触脱离的结构调节
基本信息
- 批准号:10579319
- 负责人:
- 金额:$ 22.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesivesApoptosisApoptoticArchitectureAtomic Force MicroscopyBiochemicalBiophysicsCRISPR screenCancerousCell CommunicationCell DeathCell-Mediated CytolysisCellsCellular biologyCessation of lifeClinicComplexContractsCytoskeletonCytotoxic T-LymphocytesDataDetectionDissociationDown-RegulationExhibitsExperimental ModelsF-ActinFluorescenceFluorescent ProbesFoundationsFunding MechanismsFutureGeneticGranzymeHealthHumanImageImmuneImmune responseImmunityInflammationInvestigationKnowledgeLearningLigandsLymphocyteLymphocyte ActivationLymphocyte FunctionMechanicsMethodsMissionModalityModelingMolecularMorphologyMyosin Type IIPathway interactionsPeptide HydrolasesPhagocytesPhotobleachingPositioning AttributeProcessProteinsQualifyingRegulationRho-associated kinaseStereotypingSurfaceSynapsesT-Lymphocyte and Natural Killer CellTestingTherapeuticUnited States National Institutes of HealthUp-RegulationVDAC1 geneWorkapoptosis inducing factorbasebiophysical propertiesbiophysical techniquescell typecytotoxicfallshigh resolution imagingimmune functionimmunological synapseimprovedinnovationinsightinterdisciplinary approachinterestinterfacialloss of functionmechanical propertiesmechanotransductionneoplasm immunotherapynoveloptogeneticspathogenperforinpharmacologicpreventrecruitresponsesuperresolution imagingtumor
项目摘要
Summary
Cytotoxic lymphocytes, comprising cytotoxic T lymphocytes (CTLs) and natural killer cells, kill by forming
specialized immune synapses with their targets, into which they channel toxic factors that induce apoptosis.
Although much is known about how cytotoxic synapses form, the cellular and molecular mechanisms that control
their dissolution are poorly understood. Addressing this gap in knowledge is important because cytotoxic
lymphocytes must let go of dying cells to kill multiple targets in a serial manner. Efficient synapse disassembly
also prevents spurious inflammation by attenuating sustained cytotoxic lymphocyte activation and also by
facilitating the clearance of apoptotic corpses by phagocytes. Prior attempts to study this process have focused
on the recognition of biochemical features associated with cell death. Our preliminary studies, however, suggest
an alternative and conceptually innovative model in which lymphocyte detachment is induced by biophysical
changes in dying target cells. We are particularly interested apoptotic contraction, which we have found occurs
just before the dissolution of CTL-target cell conjugates. In addition, genetic and pharmacological decoupling of
contraction from apoptosis delays the dissociation response. Building upon these findings, we hypothesize that
CTLs use the characteristic biophysical features of contracting targets to trigger release. Our proposed studies,
which are divided into two Specific Aims, will explore the biophysical basis for CTL dissociation and the molecular
pathways that govern the process. Specific Aim 1 will employ single cell mechanobiological methods to assess
the effects of apoptotic contraction on cortical rigidity and surface ligand mobility. We will also use an
optogenetics approach to determine whether cytoskeletal contraction is sufficient to induce synapse
disassembly. Specific Aim 2 will examine the molecular bases for apoptotic contraction and its detection by
CTLs, using targeted loss-of-function and CRISPR/Cas9 screening. Our proposed studies will leverage
technically innovative methods, including super-resolution imaging, optogenetics, and atomic force microscopy.
They will also introduce a novel concept, that mechanosensing can determine the lifetime of an immune cell-cell
interaction. The successful completion of this project will address a long-standing enigma in lymphocyte cell
biology and likely reveal new avenues for the modulation of cellular cytotoxicity in the clinic. As such, this
proposal is highly relevant to the NIH mission in that it will contribute to the advancement of knowledge that could
improve human health.
总结
细胞毒性淋巴细胞,包括细胞毒性T淋巴细胞(CTL)和自然杀伤细胞,通过形成
它们与靶点形成专门的免疫突触,将诱导细胞凋亡的毒性因子导入靶点。
尽管我们对细胞毒性突触的形成方式了解很多,但控制突触形成的细胞和分子机制仍然是未知的。
它们的溶解知之甚少。解决这一知识差距很重要,因为细胞毒性
淋巴细胞必须释放垂死的细胞,以连续的方式杀死多个目标。高效突触拆卸
还通过减弱持续的细胞毒性淋巴细胞活化来预防假性炎症,
促进吞噬细胞对凋亡尸体的清除。之前研究这一过程的尝试都集中在
与细胞死亡相关的生化特征的识别。然而我们的初步研究表明
一种替代的和概念上创新的模型,其中淋巴细胞脱离是由生物物理诱导的,
死亡靶细胞的变化。我们特别感兴趣的是凋亡收缩,
就在CTL-靶细胞缀合物溶解之前。此外,遗传学和药理学脱钩,
细胞凋亡引起的收缩延迟了解离反应。基于这些发现,我们假设,
CTL使用收缩靶标的特征性生物物理特征来触发释放。我们提出的研究,
分为两个特定的目的,将探讨CTL解离的生物物理基础和CTL的分子生物学基础。
控制这一过程的途径。具体目标1将采用单细胞机械生物学方法来评估
凋亡收缩对皮质硬度和表面配体迁移率的影响。我们还将使用
光遗传学方法来确定细胞骨架收缩是否足以诱导突触
拆卸特异性目标2将检查凋亡收缩的分子基础,并通过
CTL,使用靶向功能丧失和CRISPR/Cas9筛选。我们提出的研究将利用
技术创新方法,包括超分辨率成像,光遗传学和原子力显微镜。
他们还将引入一个新的概念,即机械传感可以确定免疫细胞的寿命-细胞
互动该项目的成功完成将解决淋巴细胞中一个长期存在的谜团,
生物学,并可能揭示新的途径,用于调节细胞毒性在临床上。因此,这
该提案与NIH的使命高度相关,因为它将有助于知识的进步,
改善人类健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Morgan A Huse其他文献
Morgan A Huse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Morgan A Huse', 18)}}的其他基金
Architectural regulation of cytotoxic synapse detachment
细胞毒性突触脱离的结构调节
- 批准号:
10467438 - 财政年份:2022
- 资助金额:
$ 22.13万 - 项目类别:
Mechanoregulation of cytotoxic lymphocyte function
细胞毒性淋巴细胞功能的机械调节
- 批准号:
10316830 - 财政年份:2010
- 资助金额:
$ 22.13万 - 项目类别:
Mechanistic Analysis of T Cell Polarity by Photoactivation of Single Cells
单细胞光活化 T 细胞极性的机制分析
- 批准号:
8214512 - 财政年份:2010
- 资助金额:
$ 22.13万 - 项目类别:
Mechanoregulation of cytotoxic lymphocyte function
细胞毒性淋巴细胞功能的机械调节
- 批准号:
10646310 - 财政年份:2010
- 资助金额:
$ 22.13万 - 项目类别:
Synaptic Control of Cytotoxic T cell Function
细胞毒性 T 细胞功能的突触控制
- 批准号:
9187404 - 财政年份:2010
- 资助金额:
$ 22.13万 - 项目类别:
Mechanistic Analysis of T Cell Polarity by Photoactivation of Single Cells
单细胞光活化 T 细胞极性的机制分析
- 批准号:
8019098 - 财政年份:2010
- 资助金额:
$ 22.13万 - 项目类别:
Mechanistic Analysis of T Cell Polarity by Photoactivation of Single Cells
单细胞光活化 T 细胞极性的机制分析
- 批准号:
8604669 - 财政年份:2010
- 资助金额:
$ 22.13万 - 项目类别:
Mechanistic Analysis of T Cell Polarity by Photoactivation of Single Cells
单细胞光活化 T 细胞极性的机制分析
- 批准号:
7861930 - 财政年份:2010
- 资助金额:
$ 22.13万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 22.13万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 22.13万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 22.13万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 22.13万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 22.13万 - 项目类别:
Investment Accelerator