Data to Clinical Action: Using Predictive Analytics to Improve Care of Veterans with Opioid Use Disorder
数据到临床行动:使用预测分析来改善对患有阿片类药物使用障碍的退伍军人的护理
基本信息
- 批准号:10317224
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAreaArtificial IntelligenceAutomobile DrivingBig DataBig Data MethodsBuprenorphineBusinessesCaringClinicalComputersCounselingDataData AnalyticsData ScienceDiagnosisDiscriminationDoseDrug usageEffectivenessElectronic Health RecordEnrollmentEnsureFeasibility StudiesFocus GroupsFrequenciesFutureGuidelinesHealth Services AccessibilityHealthcareHybridsIndividualInformaticsIntelligenceInterventionK-Series Research Career ProgramsKnowledgeLearningLogistic RegressionsMeasuresMental HealthMethadoneMethodologyMethodsModelingMonitorNaltrexoneOpioidOutcomeOverdosePainPain managementPatientsPersonsPharmaceutical PreparationsPharmacy facilityPredictive AnalyticsPrimary Health CareProbabilityProviderRandomized Controlled TrialsReportingResearchResearch PriorityResourcesRiskRisk FactorsSamplingServicesSiteSubstance Use DisorderSuicideTechniquesTestingTimeTrainingTranslatingVeteransVisitacceptability and feasibilityarmbasebig-data sciencecare outcomescare systemscareerclinical decision supportcomorbiditydata warehousedesigneffectiveness evaluationeffectiveness testingexperiencefeasibility testingfeedforward neural networkfollow-uphigh riskillicit drug useimplementation scienceimprovedimproved outcomeinnovationinterestmachine learning methodmathematical modelmedical specialtiesmilitary veteranmodifiable riskmortalityneural networkoperationopioid overdoseopioid use disorderoverdose riskpeer supportpilot testpilot trialpredictive modelingpreventrandom forestskillsstandard of caresupport toolstooltreatment guidelinestreatment planningusabilitywaiver
项目摘要
Background. Medication for opioid use disorder (MOUD) prevents overdoses and improves mortality in
Veterans with OUD, but retention on MOUD is critical for achieving those clinical endpoints. Only 50% of
Veterans are retained on MOUD at 6-months post-MOUD initiation. Poor engagement in additional needed
care services is an important risk factor for early MOUD discontinuation. Consequently, providers’ ability to
identify Veterans in need of additional care or support while on MOUD may increase the likelihood of Veterans’
continued use of MOUD. Valid predictive models can provide an accurate probability of an individual Veteran
experiencing the outcome being modeled (e.g., MOUD discontinuation). Prediction of future MOUD
discontinuation risk could provide an innovative and real-time method for identifying Veterans in need of
additional care (e.g., peer support). Significance/Impact. Predictive models could be used to lower MOUD
attrition risk and improve outcomes for this Veteran population by continuously monitoring their risk of MOUD
discontinuation in real-time during active MOUD treatment and identifying those Veterans in need of additional
care (e.g., if increasing risk between visits, providers might add peer support services to a treatment plan).
Innovation. This CDA-2 encompasses three HSR&D research priority areas (opioid/pain, health care
informatics, and access to care) while crosscutting HSR methods of “big” data and implementation science, all
in an effort to improve care and outcomes for Veterans with OUD. This study will also be the first to develop
and pilot test a clinical decision support tool (CDST), based on a predictive model, to improve Veterans’ MOUD
retention. Specific Aims. (1) To develop and validate PREMMOUD, a PREdictive Model for MOUD
discontinuation. Hypotheses: (H1) I will develop a predictive model with good discrimination (e.g., c-statistic, a
measure of goodness-of-fit, ≥0.8) for identifying Veterans likely to discontinue MOUD within the initial 6 months
of treatment; (H2) the model generated using neural network techniques will have better discrimination than the
models generated using random forest and logistic regression techniques. (2) To adapt PREMMOUD into a
CDST to continuously monitor risk of MOUD discontinuation and provide clinical guidelines for addressing the
primary risk factors driving the PREMMOUD score. (3) To assess (a) the feasibility of conducting a large scale,
randomized controlled trial (RCT) to test PREMMOUD CDST’s (P-CDST) effectiveness as well as (b) P-
CDST’s acceptability among waivered providers. Hypotheses: (H3) The feasibility of conducting a large-scale
RCT to evaluate P-CDST’s effectiveness will be supported; (H4) P-CDST will be acceptable among VHA
waivered providers. Methodology. Using machine-learning methods and data from the VHA Corporate Data
Warehouse (2006-2019), I will train and validate PREMMOUD in a national sample of Veterans initiating
MOUD (Aim 1). For Aim 2, I will conduct two rounds of focus groups with key stakeholders (VHA providers,
Veterans receiving MOUD, VHA operations partners) to inform the creation of a beta-version of P-CDST to be
integrated into CPRS/Cerner. To build P-CDST, I will use VHA CDW data, PREMMOUD, SQL Server
Reporting Services (SSRS) and the Business Intelligence Service Line (BISL) platform. P-CDST will contain
the patient’s real-time PREMMOUD score as well as clinical guidelines to support the provider in addressing
the Veteran’s specific risk factors driving the PREMMOUD score. For Aim 3, I will conduct a single-arm, two-
site pilot trial to assess study feasibility (provider enrollment, frequency of P-CDST use, and follow-up rates)
and P-CDST’s acceptability (clinical usability of P-CDST). Implementation/Next Steps. Aim 1 will support an
HSR&D IIR submission in Year 3 to assess whether PREMMOUD can be used to identify which Veterans,
receiving MOUD, can effectively be treated in specialty care versus non-specialty care and which Veterans
benefit from additional supportive services. A second IIR proposal will be submitted post CDA-2 to conduct an
RCT, using a hybrid design, to evaluate the effectiveness and implementation potential of P-CDST in VHA.
背景阿片类药物使用障碍(MOUD)的药物预防过量并提高死亡率
OUD的退伍军人,但保留MOUD对于实现这些临床终点至关重要。只有50%的
退伍军人在MOUD启动后6个月保留在MOUD上。在额外需求方面的参与不足
护理服务是早期MOUD中止的重要风险因素。因此,供应商能够
确定在MOUD上需要额外护理或支持的退伍军人可能会增加退伍军人
继续使用MOUD。有效的预测模型可以提供单个退伍军人的准确概率
经历被建模的结果(例如,MOUD中止)。未来MOUD预测
中止风险可以提供一种创新的和实时的方法来识别退伍军人需要
额外的护理(例如,同伴支持)。意义/影响。预测模型可用于降低MOUD
通过持续监测这些退伍军人的MOUD风险,
在积极的MOUD治疗期间实时中断,并确定需要额外治疗的退伍军人
护理(例如,如果两次就诊之间的风险增加,提供者可能会在治疗计划中增加同伴支持服务)。
创新该CDA-2包括三个HSR&D研究优先领域(阿片类药物/疼痛,医疗保健
信息学,并获得护理),同时横切“大”数据和实施科学的HSR方法,所有
努力改善对患有OUD的退伍军人的护理和结果。这项研究也将是第一个开发
并对基于预测模型的临床决策支持工具(CDST)进行试点测试,以改善退伍军人的MOUD
潴留具体目标。(1)开发和验证PREMMOUD,一个MOUD预测模型
中止假设:(H1)我将开发一个具有良好区分力的预测模型(例如,c-统计量,a
拟合优度指标,≥0.8),用于识别可能在最初6个月内停止MOUD的退伍军人
(H2)使用神经网络技术生成的模型将具有比使用神经网络技术生成的模型更好的区分度。
使用随机森林和逻辑回归技术生成的模型。(2)将PREMMOUD改造成
CDST将持续监测MOUD停药的风险,并提供临床指南,
影响PREMMOUD评分的主要风险因素。(3)评估(a)进行大规模、
随机对照试验(RCT),以测试PREMMOUD CDST(P-CDST)的有效性以及(B)P-
CDST在豁免供应商中的可接受性。假设:(H3)开展大规模的
将支持评价P-CDST有效性的RCT;(H4)VHA将接受P-CDST
放弃供应商。方法论使用机器学习方法和来自VHA Corporate Data的数据
仓库(2006-2019),我将培训和验证PREMMOUD在退伍军人发起的国家样本
MOUD(目标1)。对于目标2,我将与主要利益相关者(VHA提供者,
退伍军人接收MOUD,VHA运营合作伙伴),以通知创建P-CDST的测试版,
整合到CPRS/Cerner中。为了构建P-CDST,我将使用VHA CDW数据,PREMMOUD,SQL Server
Reporting Services(SSRS)和商业智能服务线(BISL)平台。P-CDST将包含
患者的实时PREMMOUD评分以及临床指南,以支持提供者解决
退伍军人的特定风险因素驱动PREMMOUD评分。对于目标3,我将进行单臂,双臂-
评估研究可行性的临床试验机构试点试验(提供者入组、P-CDST使用频率和随访率)
和P-CDST的可接受性(P-CDST的临床可用性)。执行/后续步骤。目标1将支持
在第3年提交HSR&D IIR,以评估PREMMOUD是否可用于识别哪些退伍军人,
接受MOUD,可以有效地在专科护理与非专科护理,
受益于额外的支持服务。第二个IIR提案将在CDA-2之后提交,
RCT,采用混合设计,评价P-CDST在VHA中的有效性和实施潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Corey J Hayes其他文献
Statistical Analysis of Telehealth Use and Pre- and Postpandemic Insurance Coverage in Selected Health Care Specialties in a Large Health Care System in Arkansas: Comparative Cross-Sectional Study
阿肯色州一个大型医疗保健系统中选定医疗保健专业的远程医疗使用以及大流行前后保险覆盖情况的统计分析:比较性横断面研究
- DOI:
10.2196/49190 - 发表时间:
2024-01-01 - 期刊:
- 影响因子:6.000
- 作者:
Aysenur Betul Cengil;Sandra Eksioglu;Burak Eksioglu;Hari Eswaran;Corey J Hayes;Cari A Bogulski - 通讯作者:
Cari A Bogulski
Association of Remote Patient Monitoring with Mortality and Healthcare Utilization in Hypertensive Patients: a Medicare Claims–Based Study
远程患者监测与高血压患者死亡率和医疗保健利用的关联:一项基于医疗保险索赔的研究
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5.7
- 作者:
M. Acharya;Mir M Ali;C. Bogulski;Ambrish A Pandit;Ruchira V Mahashabde;H. Eswaran;Corey J Hayes - 通讯作者:
Corey J Hayes
Corey J Hayes的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




