Therapeutic potential of base editing strategies to convert CAG to CAA in Huntington's Disease
将 CAG 转化为 CAA 的碱基编辑策略在亨廷顿病中的治疗潜力
基本信息
- 批准号:10318916
- 负责人:
- 金额:$ 55.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-15 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAge of OnsetAllelesAmino Acid SequenceAnimal ModelBiological ModelsBrainCAG repeatCell Culture TechniquesCell modelCellsClinicalClinical TrialsClone CellsClustered Regularly Interspaced Short Palindromic RepeatsCodeCorpus striatum structureDNA Repair GeneDataDevelopmentDiseaseDisease modelEngineeringEvaluationFutureGene DuplicationGene TargetingGene-ModifiedGenesGeneticGlutamineHeritabilityHumanHuntington DiseaseHuntington geneHuntington proteinInterruptionInvestigationKnock-in MouseKnowledgeLengthLiverLocationMethodsModelingModificationMolecularMusMutationNeuronal DifferentiationNeuronsNuclearOnset of illnessOutcomePatientsPersonsPhenotypePlant RootsPositioning AttributeResearchRoleRouteSpecificityStainsStudy modelsSymptomsTestingTherapeuticTreatment EfficacyVariantWorkbasebase editingbase editorclinical investigationclinically relevantclinically significanteffective therapygenome editinggenome wide association studygenome-wideinduced pluripotent stem cellinnovationinsightmolecular phenotypemouse modelnovelnovel therapeuticspre-clinicalpreventtherapeutic targettherapeutically effectivetranscriptome sequencingtreatment strategyvirtual
项目摘要
SUMMARY / ABSTRACT
Therapeutic potential of base editing strategies to convert CAG to CAA in Huntington's disease
Huntington's disease (HD) defies development of effective treatments despite its long-known genetic cause
and numerous mechanisms implicated in model systems, reflecting limited clinical utility of model-based
investigations. By contrast, observations in HD patients may reveal therapeutics that actually works in people.
All cases of HD are due to an expanded CAG repeat in huntingtin gene. However, age at clinical manifestation
varies widely, and unexplained variance in age at onset by the mutation size shows heritability, indicating HD is
modified by genes. Therefore, we performed genome-wide association study, and discovered that repeat
instability-related DNA repair genes modify HD onset. Importantly, we revealed that duplicated and loss of
CAG-CAA interruption in the huntingtin CAG repeat robustly delay and hasten HD onset age, respectively.
Together, our data indicate that the rate of HD is largely determined by the size of uninterrupted CAG repeat
and modified by repeat instability, providing insights into driver of the disease and therapeutic strategies.
Capitalizing on these clinically relevant observations in humans, we conceived novel therapeutic Base Editing
(BE) strategies to convert CAG to CAA aiming at delaying clinical manifestation by decreasing the size of
uninterrupted CAG repeat and potentially further suppressing repeat expansion. Our novel therapeutic BE
strategies have a number of advantages over other gene targeting approaches. Observations in patients
suggest that CAG-to-CAA conversion produces very strong therapeutic benefit (i.e., delaying onset more than
10 years). In addition, our BE strategies, targeting the root cause of the disease, do not alter huntingtin protein
since both CAG and CAA encode glutamine. Therefore, same single treatment strategies can be applied to all
HD patients to produce allele-specific benefits. Here, we propose to determine therapeutic potential of selected
BE strategies to convert CAG to CAA using relevant cell and animal models of HD. Briefly, we will 1) evaluate
conversion efficiencies and allele specificity of BE strategies with high efficiencies, 2) test whether CAG-to-
CAA conversion affects HTT expression levels, neuronal differentiation, and other molecular phenotypes, 3)
determine impacts of CAG-to-CAA conversion on CAG repeat instability, and 4) evaluate off-target effects, and
further optimize to reveal the BE strategy with the highest feasibility and therapeutic potential. This research
will 1) produce a complete evaluation chart for combinations of different base editors and conversion
strategies, 2) generate knowledge regarding allele specificity, off-targeting, and molecular consequences, 3)
provides considerations for subsequent optimization, and 4) produce expected outcomes when BE strategies
are applied to HD patients. Our research testing novel and innovative therapeutic routes for HD therefore will
significantly contribute to the development of effective therapeutics for HD and other CAG expansion disorders.
摘要/摘要
将CAG转换为CAA的碱基编辑策略在亨廷顿病中的治疗潜力
尽管亨廷顿病(HD)的遗传原因早已为人所知,但仍无法开发出有效的治疗方法
以及模型系统中涉及的众多机制,反映了基于模型的临床实用有限
调查。相比之下,对HD患者的观察可能会揭示出在人类身上实际有效的疗法。
所有HD病例均由Huntingtin基因CAG重复序列扩增所致。然而,临床表现的年龄
差异很大,发病年龄因突变大小而无法解释的差异表明是遗传性的,表明HD是
被基因改变了。因此,我们进行了全基因组关联研究,发现重复
不稳定相关的DNA修复基因改变了HD的发病。重要的是,我们透露了复制和丢失的
CAG-CAA阻断在CAG重复中显著延缓和加速HD的发病年龄。
总之,我们的数据表明,HD的速率在很大程度上取决于不间断CAG重复的大小
并通过重复不稳定进行修改,为疾病的驱动因素和治疗策略提供了见解。
利用这些与临床相关的人类观察,我们构思了新的治疗基础编辑
(BE)将CAG转换为CAA的策略,旨在通过减少CAG的大小来延迟临床表现
不间断的CAG重复,并潜在地进一步抑制重复扩展。我们的新型治疗性BE
与其他基因靶向方法相比,该策略具有许多优势。对患者的观察
提示CAG到CAA的转换产生了非常强的治疗益处(即,比起
10年)。此外,我们针对疾病根本原因的BE策略不会改变亨廷顿蛋白
因为CAG和CAA都编码谷氨酰胺。因此,相同的单一治疗策略可以应用于所有
使HD患者产生等位基因特异性的益处。在这里,我们建议确定选定的治疗潜力
利用HD的相关细胞和动物模型将CAG转化为CAA的策略。简而言之,我们将1)评估
高效的BE策略的转换效率和等位基因专一性;2)检测CAG-to-BE
CAA转换影响HTT的表达水平、神经元分化和其他分子表型,3)
确定CAG到CAA转换对CAG重复不稳定性的影响,以及4)评估偏离目标的影响,以及
进一步优化,揭示具有最高可行性和治疗潜力的BE策略。这项研究
将1)为不同基础编辑和转换的组合生成完整的评估表
策略,2)产生关于等位基因专一性、非靶向性和分子后果的知识,3)
提供后续优化的考虑因素,以及4)在BE策略时产生预期结果
适用于HD患者。因此,我们的研究测试HD的新的和创新的治疗路线
对HD和其他CAG扩张性疾病的有效治疗方法的开发做出了重大贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jong-Min Lee其他文献
Jong-Min Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jong-Min Lee', 18)}}的其他基金
Therapeutic potential of base editing strategies to convert CAG to CAA in Huntington's Disease
将 CAG 转化为 CAA 的碱基编辑策略在亨廷顿病中的治疗潜力
- 批准号:
10097632 - 财政年份:2020
- 资助金额:
$ 55.86万 - 项目类别:
Therapeutic Potential of Base Editing Strategies to Convert CAG to CAA in Huntington's Disease
将 CAG 转化为 CAA 的碱基编辑策略在亨廷顿病中的治疗潜力
- 批准号:
10536604 - 财政年份:2020
- 资助金额:
$ 55.86万 - 项目类别:
Genetic foundation for complete mutant allele-specific CRISPR in neurodegenerative diseases
神经退行性疾病中完整突变等位基因特异性 CRISPR 的遗传基础
- 批准号:
10216366 - 财政年份:2018
- 资助金额:
$ 55.86万 - 项目类别:
Genetic foundation for complete mutant allele-specific CRISPR in neurodegenerative diseases
神经退行性疾病中完整突变等位基因特异性 CRISPR 的遗传基础
- 批准号:
10447597 - 财政年份:2018
- 资助金额:
$ 55.86万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Determining the mechanism of action of cis-acting modifiers on the age of onset of Huntington Disease
确定顺式作用修饰剂对亨廷顿病发病年龄的作用机制
- 批准号:
417256 - 财政年份:2019
- 资助金额:
$ 55.86万 - 项目类别:
Studentship Programs
Effect of age of onset of contraception use on brain functioning.
避孕开始年龄对大脑功能的影响。
- 批准号:
511267-2017 - 财政年份:2017
- 资助金额:
$ 55.86万 - 项目类别:
University Undergraduate Student Research Awards
Non-random occurrence and early age of onset of diverse lymphoid cancers in families supports the existence of genetic risk factors for multiple lymphoid cancers.
家族中多种淋巴癌的非随机发生和发病年龄较早,支持多种淋巴癌存在遗传危险因素。
- 批准号:
347105 - 财政年份:2016
- 资助金额:
$ 55.86万 - 项目类别:
Polish-German Child Bilingualism: The Role of Age of Onset for Long-Term Achievement
波兰-德国儿童双语:发病年龄对长期成就的作用
- 批准号:
277135691 - 财政年份:2015
- 资助金额:
$ 55.86万 - 项目类别:
Research Grants
Bioinformatics strategies to relate age of onset with gene-gene interaction
将发病年龄与基因间相互作用联系起来的生物信息学策略
- 批准号:
9097781 - 财政年份:2015
- 资助金额:
$ 55.86万 - 项目类别:
Early Age-of-Onset AD: Clinical Heterogeneity and Network Degeneration
早期 AD 发病年龄:临床异质性和网络退化
- 批准号:
9212684 - 财政年份:2014
- 资助金额:
$ 55.86万 - 项目类别:
Early Age-of-Onset AD: Clinical Heterogeneity and Network Degeneration
早期 AD 发病年龄:临床异质性和网络退化
- 批准号:
8696557 - 财政年份:2014
- 资助金额:
$ 55.86万 - 项目类别:
Effects of delaying age of onset of binge drinking on adolescent brain development: A proposal to add neuroimaing measures to the CO-Venture Trial.
延迟酗酒的发病年龄对青少年大脑发育的影响:在 CO-Venture 试验中添加神经影像测量的建议。
- 批准号:
267251 - 财政年份:2012
- 资助金额:
$ 55.86万 - 项目类别:
Operating Grants
Stress Effects on Alcohol Consumption: Age of onset and genes in heavy drinkers
压力对饮酒的影响:酗酒者的发病年龄和基因
- 批准号:
8606722 - 财政年份:2012
- 资助金额:
$ 55.86万 - 项目类别:
Marijuana: Neurobiologic Correlates of Age of Onset
大麻:发病年龄的神经生物学相关性
- 批准号:
8644793 - 财政年份:2012
- 资助金额:
$ 55.86万 - 项目类别:














{{item.name}}会员




