Genetic foundation for complete mutant allele-specific CRISPR in neurodegenerative diseases
神经退行性疾病中完整突变等位基因特异性 CRISPR 的遗传基础
基本信息
- 批准号:10447597
- 负责人:
- 金额:$ 43.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesAlzheimer&aposs DiseaseAnimal ModelBehavioralBiochemicalBiologicalBiological AssayBiological ModelsBrainCAG repeatCell modelCellsChronicClustered Regularly Interspaced Short Palindromic RepeatsDNADNA Sequence AlterationDevelopmentDiseaseDrug TargetingEquilibriumEvolutionFamily memberFibroblastsFoundationsFutureGene SilencingGene TargetingGenesGeneticGenetic DiseasesGenetic TranscriptionGenetic VariationGuide RNAHaplotypesHuman GeneticsHuntington DiseaseIndividualInjectionsInvestigationKnock-in MouseKnock-outKnowledgeLocationMeasuresMediatingMedicineMessenger RNAMethodsModelingMolecularMouse StrainsMusMutationNervous system structureNeurodegenerative DisordersNeurogliaNeuronal DifferentiationNeuronsNonsense-Mediated DecayNuclearObservational StudyOutcomeParticipantPathway interactionsPatientsPreventionProductionProteinsRNAResearchResearch Project GrantsResourcesRiskRouteSafetySiteSite-Directed MutagenesisSpecificityStainsTailTechnologyTestingTestisTherapeuticTherapeutic InterventionTranscriptTranscription Initiation SiteTransgenesTransgenic MiceTreatment EfficacyVariantVeinsVertebral columnbasebehavioral outcomebehavioral phenotypingdisease-causing mutationdosageeffective therapyexperimental studyflexibilityfrontotemporal lobar dementia-amyotrophic lateral sclerosisin vivoinduced pluripotent stem cellinnovationinsertion/deletion mutationknowledge basemolecular phenotypemutantnerve stem cellnovelpre-clinicalprecision medicinepreclinical studypreventsuccesstargeted treatmenttherapeutic targettranscriptometranscriptome sequencing
项目摘要
SUMMARY / ABSTRACT
Title: Genetic foundation for complete mutant allele-specific CRISPR in neurodegenerative diseases
Many cases of dominant neurodegenerative disorders defy the development of effective treatments despite
their long-known genetic causes and numerous implicated underlying pathways, reflecting difficulty in defining
rational drug targets through investigations focusing on mechanisms. Alternatively, development and
maturation of gene targeting/lowering approaches have highlighted the value of disease-causing mutation itself
as the target of treatments. Although promising, mRNA-lowering approaches suffer from inherent limitations of
requirement of repeated treatments, allele-specificity, and dosage controls. We recently developed a complete
allele-specific DNA targeting strategy based on CRISPR gene editing technology using PAM-altering SNP to
overcome key limitations of conventional mRNA targeting approaches. Our silencing strategy achieves perfect
allele specificity by using SNP variations that create CRISPR PAM sites selectively on the mutant
allele/haplotype. Importantly, our novel CRISPR gene silencing strategy targets the haplotype backbone that
carries the disease-causing mutation, and therefore does not depend on the type, size, and location of the
disease allele, providing broadly applicable therapeutic platforms. Here, we propose to determine therapeutic
potential of PAM-Altering SNP (PAS)-based CRISPR strategies 1) to prevent the transcription or 2) to induce
nonsense-mediated decay of the mutant allele in cells and animal models of Huntington's disease (HD).
Briefly, we will: 1) determine whether mutant allele-specific Transcription Prevention by CRISPR (TP-CRISPR)
and Nonsense-Mediated Decay by CRISPR (NMD-CRISPR) efficiently introduce knockout mutations in
neuronal cells derived from patients and brains of animal models of HD, 2) test whether selective silencing of
mutant allele of a developmentally important gene (i.e., HTT) influences neuronal differentiation capability of
induced pluripotent stem cells (iPSC), 3) compare targeting efficiency in neurons and glia, and 4) determine
molecular/cellular, behavioral consequences, and pre-clinical therapeutic efficacy of mutant allele-specific
CRISPR in vivo. We anticipate this research will 1) nominate optimal CRISPR targeting sites and strategies for
HD, 2) generate knowledge base regarding efficiency of mutant-specific CRISPR, and 3) evaluate potential of
PAS-based allele-specific CRISPR as therapeutic intervention for HD, providing 1) genetic foundation for novel
and innovative therapeutic routes for HD and 2) proof-of-concept for other dominant neurodegenerative
diseases.
摘要/摘要
神经退行性疾病中完全突变型等位基因特异性CRISPR的遗传学基础
许多显性神经退行性疾病的病例无视有效治疗的发展,尽管
它们长期已知的遗传原因和许多隐含的潜在途径,反映了定义的困难
通过侧重于机制的调查,合理地确定药物靶点。或者,发展和
基因靶向/降低方法的成熟凸显了致病突变本身的价值。
作为治疗的靶点。尽管有希望,但降低信使核糖核酸的方法受到以下固有限制
重复治疗的要求、等位基因特异性和剂量控制。我们最近开发了一种完整的
基于CRISPR基因编辑技术的等位基因特异性DNA打靶策略
克服传统的信使核糖核酸靶向方法的关键限制。我们的沉默策略达到了完美
通过使用SNP变异选择性地在突变体上创建CRISPR PAM位点来实现等位基因特异性
等位基因/单倍型。重要的是,我们新的CRISPR基因沉默策略针对的是单倍型骨架
携带致病突变,因此不依赖于
疾病等位基因,提供广泛适用的治疗平台。在这里,我们建议确定治疗方法
基于PAM改变SNP(PAS)的CRISPR策略1)阻止转录或2)诱导
在亨廷顿病(HD)的细胞和动物模型中,无意义介导的突变等位基因的衰退。
简而言之,我们将:1)确定突变的等位基因特异性转录是否通过CRISPR(TP-CRISPR)防止
和无义介导的CRISPR衰变(NMD-CRISPR)有效地在
从HD患者和动物模型的脑来源的神经细胞,2)检测选择性沉默
发育重要基因(即hTt)的突变等位基因影响神经分化能力
诱导多能干细胞(IPSC),3)比较神经元和神经胶质细胞的靶向效率,4)确定
突变型等位基因特异性的分子/细胞、行为后果和临床前治疗效果
体内CRISPR。我们预计这项研究将1)提名最佳CRISPR目标站点和策略
HD,2)生成关于突变特定CRISPR效率的知识库,以及3)评估
以PAS为基础的等位基因特异性CRISPR作为HD的治疗干预,为新的
HD的创新治疗途径和2)对其他显性神经退行性变的概念验证
疾病。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Allele-specific silencing of the gain-of-function mutation in Huntington's disease using CRISPR/Cas9.
- DOI:10.1172/jci.insight.141042
- 发表时间:2022-10-10
- 期刊:
- 影响因子:8
- 作者:Shin, Jun Wan;Hong, Eun Pyo;Choi, Doo Eun;Seong, Ihn Sik;Park, Seri S.;Whittaker, Madelynn N.;Kleinstiver, Benjamin P.;Chen, Richard Z.;Lee, Jong-Min
- 通讯作者:Lee, Jong-Min
Haplotype-specific insertion-deletion variations for allele-specific targeting in Huntington's disease.
- DOI:10.1016/j.omtm.2022.03.001
- 发表时间:2022-06-09
- 期刊:
- 影响因子:0
- 作者:Shin JW;Shin A;Park SS;Lee JM
- 通讯作者:Lee JM
PAM-altering SNP-based allele-specific CRISPR-Cas9 therapeutic strategies for Huntington's disease.
- DOI:10.1016/j.omtm.2022.08.005
- 发表时间:2022-09-08
- 期刊:
- 影响因子:0
- 作者:Shin, Jun Wan;Hong, Eun Pyo;Park, Seri S.;Choi, Doo Eun;Zeng, Sophia;Chen, Richard Z.;Lee, Jong-Min
- 通讯作者:Lee, Jong-Min
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jong-Min Lee其他文献
Jong-Min Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jong-Min Lee', 18)}}的其他基金
Therapeutic potential of base editing strategies to convert CAG to CAA in Huntington's Disease
将 CAG 转化为 CAA 的碱基编辑策略在亨廷顿病中的治疗潜力
- 批准号:
10318916 - 财政年份:2020
- 资助金额:
$ 43.1万 - 项目类别:
Therapeutic potential of base editing strategies to convert CAG to CAA in Huntington's Disease
将 CAG 转化为 CAA 的碱基编辑策略在亨廷顿病中的治疗潜力
- 批准号:
10097632 - 财政年份:2020
- 资助金额:
$ 43.1万 - 项目类别:
Therapeutic Potential of Base Editing Strategies to Convert CAG to CAA in Huntington's Disease
将 CAG 转化为 CAA 的碱基编辑策略在亨廷顿病中的治疗潜力
- 批准号:
10536604 - 财政年份:2020
- 资助金额:
$ 43.1万 - 项目类别:
Genetic foundation for complete mutant allele-specific CRISPR in neurodegenerative diseases
神经退行性疾病中完整突变等位基因特异性 CRISPR 的遗传基础
- 批准号:
10216366 - 财政年份:2018
- 资助金额:
$ 43.1万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 43.1万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 43.1万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 43.1万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 43.1万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 43.1万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 43.1万 - 项目类别: