Computational de novo design of a disulfide-rich miniprotein synthetic library and its application to engineer binders to neutralizing epitopes on Clostridium difficile toxins TcdA and TcdB

富含二硫键的微型蛋白合成文库的计算从头设计及其在工程粘合剂中的应用,以中和艰难梭菌毒素 TcdA 和 TcdB 上的表位

基本信息

项目摘要

Project Summary Disulfide-rich miniproteins are a powerful yet underutilized protein family for reagent, diagnostic and therapeutic applications. They are hyperstable like small molecules, yet are large enough to bind specifically to protein targets with high affinity and thus can be readily used to inhibit protein-protein interactions. Disulfide-rich miniproteins occur naturally, but the natural molecules are challenging to engineer. There is a pressing need for new technologies which enable disulfide-rich miniproteins to be engineered to bind to arbitrary protein targets, as is routine for other protein scaffolds like antibodies. Here, we propose a computational de novo design strategy using Rosetta to build a synthetic miniprotein library that will be generally useful for screening protein affinity reagents. The typical approach to creating protein libraries is to generate a large amount of random sequence diversity in a localized area of a single protein structure. Most of these sequences will be unstable or unable to bind any target (e.g. too polar or too nonpolar). Rather than use random sequences, we propose to explicitly design each member of a synthetic disulfide-rich miniprotein library. Our design library will contain 106 different miniproteins that display the widest possible variety of binding surfaces. The genes encoding this library will be synthesized using oligo pools. To perform computational de novo design at this scale, we extended the SEWING algorithm in Rosetta to generate hundreds of thousands of unique miniprotein structures and sequences. We developed novel filters to assess design model quality and to quantify and compare protein structures and surfaces. As a test case of this approach, we will screen our disulfide-rich miniprotein library via yeast display for binders to Clostridium difficile enterotoxins TcdA and TcdB. C. difficile is the leading cause of healthcare-related infections in the USA, and these two proteins mediate its pathogenicity. At present, the only available treatments for C. difficile enteric infection that target these toxin proteins are antibodies, which must be injected and have poor efficacy. A hyperstable miniprotein binder to the same neutralizing epitope could be administered orally. Therefore, this work presents a new frontier in de novo miniprotein engineering and library design. It will also result in a source of novel, therapeutically interesting molecules for the treatment of C. difficile infection.
项目摘要 富含二硫键的微蛋白是一个功能强大但未充分利用的蛋白质家族,用于试剂,诊断和治疗 应用.它们像小分子一样超稳定,但又大到足以特异性地与蛋白质结合。 这些靶点具有高亲和力,因此可以容易地用于抑制蛋白质-蛋白质相互作用。富二硫化物 微蛋白是天然存在的,但天然分子的工程设计具有挑战性。迫切需要 新技术使富含二硫键的微蛋白能够被工程化以结合任意蛋白质靶, 这对于其他蛋白质支架如抗体是常规的。在这里,我们提出了一个计算从头设计 使用Rosetta构建合成微蛋白文库策略,该文库通常可用于筛选蛋白质 亲和试剂 创建蛋白质文库的典型方法是在蛋白质文库中产生大量随机序列多样性。 单一蛋白质结构的局部区域。这些序列中的大多数将是不稳定的或不能结合任何 目标(例如,极性太强或非极性太强)。而不是使用随机序列,我们建议显式设计 每一个都是合成的富含二硫化物的微蛋白文库的成员。我们的设计库将包含106个不同的 显示最广泛的结合表面的小蛋白。编码这个文库的基因将 使用寡聚物池合成。为了在这种规模下进行计算从头设计,我们扩展了 Rosetta中的SEWING算法生成数十万个独特的微型蛋白质结构, 序列的我们开发了新的过滤器来评估设计模型的质量,并量化和比较蛋白质 结构和表面。 作为这种方法的一个测试案例,我们将通过酵母展示筛选我们的富含二硫化物的微蛋白库, 艰难梭菌肠毒素TcdA和TcdB。C.艰难梭菌是导致医疗相关疾病的主要原因 感染在美国,这两种蛋白质介导其致病性。目前,唯一可用 C.针对这些毒素蛋白质的艰难梭菌肠道感染是抗体,必须注射 且功效差。同一中和表位的超稳定微蛋白结合剂可以是 口服给药因此,本工作为微蛋白质工程和文库的研究开辟了新的领域 设计这也将导致一个新的来源,治疗有趣的分子治疗C。 艰难感染

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher David Bahl其他文献

Christopher David Bahl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher David Bahl', 18)}}的其他基金

De novo design of generalizable allosteric modulators and peptide ligands for G protein coupled receptors
G 蛋白偶联受体的通用变构调节剂和肽配体的从头设计
  • 批准号:
    10160902
  • 财政年份:
    2020
  • 资助金额:
    $ 20.53万
  • 项目类别:

相似海外基金

REU Site: Algorithm Design --- Theory and Engineering
REU网站:算法设计---理论与工程
  • 批准号:
    2349179
  • 财政年份:
    2024
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
REU Site: Quantum Machine Learning Algorithm Design and Implementation
REU 站点:量子机器学习算法设计与实现
  • 批准号:
    2349567
  • 财政年份:
    2024
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Standard Grant
Product structures theorems and unified methods of algorithm design for geometrically constructed graphs
几何构造图的乘积结构定理和算法设计统一方法
  • 批准号:
    23K10982
  • 财政年份:
    2023
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algorithm Design in Strategic and Uncertain Environments
战略和不确定环境中的算法设计
  • 批准号:
    RGPIN-2016-03885
  • 财政年份:
    2022
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Discovery Grants Program - Individual
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    DGECR-2022-00401
  • 财政年份:
    2022
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Discovery Launch Supplement
Human-Centered Algorithm Design for High Stakes Decision-Making in Public Services
以人为本的公共服务高风险决策算法设计
  • 批准号:
    RGPIN-2022-04570
  • 财政年份:
    2022
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithm Design
算法设计
  • 批准号:
    CRC-2015-00122
  • 财政年份:
    2022
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Canada Research Chairs
Control Theory and Algorithm Design for Nonlinear Systems Based on Finite Dimensionality of Holonomic Functions
基于完整函数有限维的非线性系统控制理论与算法设计
  • 批准号:
    22K17855
  • 财政年份:
    2022
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Scalable Algorithm Design for Unbiased Estimation via Couplings of Markov Chain Monte Carlo Methods
通过马尔可夫链蒙特卡罗方法耦合进行无偏估计的可扩展算法设计
  • 批准号:
    2210849
  • 财政年份:
    2022
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Continuing Grant
Modern mathematical models of big data-driven problems in biological sequence analysis with applications to efficient algorithm design
生物序列分析中大数据驱动问题的现代数学模型及其在高效算法设计中的应用
  • 批准号:
    569312-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 20.53万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了