Leveraging the GTP Biosynthetic Pathway for Anti-Tumor Therapies
利用 GTP 生物合成途径进行抗肿瘤治疗
基本信息
- 批准号:10317108
- 负责人:
- 金额:$ 38.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-10 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAreaAryl Hydrocarbon ReceptorAutomobile DrivingBiologyBreastCell membraneCellsDataDetectionDistantElementsEnzymesFamilyFocal Adhesion Kinase 1Focal AdhesionsG-Protein-Coupled ReceptorsGTP-Binding ProteinsGeneticGenetic TranscriptionGoalsGuanosineGuanosine TriphosphateGuanosine Triphosphate PhosphohydrolasesIncidenceInositolKruppel-like transcription factorsLeadLesionMDA MB 231Malignant NeoplasmsMediatingMediator of activation proteinMembraneMetabolicMetabolic PathwayMetabolismMetastatic breast cancerMolecularMonitorMonomeric GTP-Binding ProteinsMutationNeoplasm MetastasisOncogenicOrganOxidoreductasePathway interactionsPatient-Focused OutcomesPatientsPharmacological TreatmentPharmacologyPhysiologicalPlayPreventionProcessProductionProteinsRegulationReporterReportingResearchRoleSignal TransductionSiteStainsStructureSupplementationTestingTherapeuticTherapeutic InterventionTranscriptional RegulationTumor Cell InvasionWorkbasebreast cancer progressioncancer cellcancer invasivenesscancer typecell motilitydesignexperimental studyezringain of functionimprovedin vivoinsightloss of functionmalignant breast neoplasmmortalityneoplastic cellnew therapeutic targetnovelnovel therapeutic interventionpreventprotein activationrho GTP-Binding Proteinssensorsmall hairpin RNAtargeted treatmenttranscription factortriple-negative invasive breast carcinomatumortumor growthtumor progressiontumorigenesisvirtual
项目摘要
Invasion is one of the most detrimental features of all cancers, including breast cancer, as it allows cells to
escape the primary site and form metastases at distant organs. Despite progress in prevention and early
lesions detection, the mortality associated with metastatic breast cancer is still extremely high. This is
especially true for patients presenting with triple negative breast cancer (TNBC, characterized by lack of
expression of ER, PR, and Her2 ), which is the most aggressive and deadliest subtype of breast cancer and
the one that so far lack specific targets for therapeutic intervention. Understanding the mechanisms that
facilitate the invasion of tumor cells will enable us to design more efficient therapeutic strategies to prevent or
reduce metastasis.
Our group has established a fundamental connection between GTP metabolism and tumor cell invasiveness;
we have unveiled GTP and its metabolic enzymes (GME) as key players in tumor progression and metastatic
potential. We have developed unique fluorescent reporters for intracellular GTP that have allowed us to
determine that, in live cells, the intracellular GTP distribution is not uniform, and brought forward the hypothesis
that local concentration of GTP can influence GTP-dependent processes. In particular, we have previously
shown that genetic or pharmacological modulation of the GTP metabolic pathway deeply affected the
activation status of small GTPases of the RHO-family and, with it, the tumor cells' invasive capability. Thus, in
Aim 1 we will explore a novel mechanism of G-proteins activation based on GME subcellular localization.
Our preliminary results showed that the rate-limiting enzyme for GTP de novo production, inositol
monophosphate dehydrogenase 2 (IMPDH2) enriches at cell membrane sites that are critical for cell migration
and invasion (namely focal adhesion, FA, and invadopodia). The role of IMPDH2 at these sites is virtually
uncharacterized. Thus, in Aim 2 we will assess the catalytic and structural role of IMPDH2 in FA and
invadopodia formation, as well as in focal adhesion kinase (FAK)-directed oncogenic motility.
The understanding of GTP metabolic enzymes transcriptional regulation is far from complete. Identification of
transcriptional master regulators of the GTP biosynthetic pathway that could be pharmacologically targeted
would offer a more efficient way of suppressing this pathway. Our preliminary results suggest that Kruppel-like
factor 9 (KLF9) and aryl hydrocarbon receptor (AHR) play antagonistic roles in the transcriptional regulation of
GTP metabolic enzymes, with KLF9 suppressing, whereas AHR inducing GTP production. Thus, in Aim 3 we
will elucidate this regulation and explore pharmacological treatments to regulate the activity of these
transcription factors.
侵袭是所有癌症(包括乳腺癌)最有害的特征之一,因为它允许细胞
逃离原发部位并在远处器官形成转移。尽管在预防和早期干预方面取得了进展,
尽管转移性乳腺癌的发病率很高,但与转移性乳腺癌相关的死亡率仍然很高。这是
对于患有三阴性乳腺癌(TNBC,其特征是缺乏
ER、PR和Her 2的表达),其是乳腺癌的最具侵袭性和最致命的亚型,
迄今为止缺乏治疗干预的具体目标。了解这些机制,
促进肿瘤细胞的侵袭将使我们能够设计更有效的治疗策略,
减少转移。
我们小组已经建立了GTP代谢和肿瘤细胞侵袭性之间的基本联系;
我们已经揭示了GTP及其代谢酶(GME)作为肿瘤进展和转移的关键参与者,
潜力我们已经开发了独特的荧光报告细胞内GTP,使我们能够
确定了在活细胞中,GTP在细胞内的分布是不均匀的,并提出了假设
GTP的局部浓度可以影响GTP依赖性过程。特别是,我们以前
表明GTP代谢途径的遗传或药理学调节深深地影响了
RHO家族的小GTP酶的激活状态,以及肿瘤细胞的侵袭能力。因此在
目的1基于GME亚细胞定位,探索G蛋白激活的新机制。
我们的初步结果表明,GTP从头产生的限速酶肌醇
一磷酸脱氢酶2(IMPDH 2)在细胞膜位点富集,这些位点对于细胞迁移至关重要
和侵袭(即粘着斑、FA和侵袭足)。IMPDH 2在这些场所的作用实际上是
没有特征的因此,在目标2中,我们将评估IMPDH 2在FA中的催化和结构作用,
侵袭伪足的形成,以及粘着斑激酶(FAK)指导的致癌运动。
对GTP代谢酶转录调控的理解还远未完成。鉴定
GTP生物合成途径的转录主调节因子,
将提供一种更有效的抑制这种途径的方法。我们的初步结果表明,Kruppel样
因子9(KLF 9)和芳香烃受体(AHR)在转录调控中起拮抗作用,
GTP代谢酶,KLF 9抑制,而AHR诱导GTP产生。因此,在目标3中,我们
将阐明这种调节,并探索药物治疗,以调节这些活动,
转录因子
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Bianchi-Smiraglia其他文献
Anna Bianchi-Smiraglia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Bianchi-Smiraglia', 18)}}的其他基金
Leveraging the GTP Biosynthetic Pathway for Anti-Tumor Therapies
利用 GTP 生物合成途径进行抗肿瘤治疗
- 批准号:
10526416 - 财政年份:2020
- 资助金额:
$ 38.52万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Standard Grant