Cell surface biogenesis in Streptococcus pneumoniae
肺炎链球菌的细胞表面生物合成
基本信息
- 批准号:10318928
- 负责人:
- 金额:$ 43.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAnimal ModelAntibiotic TherapyAntibioticsAreaAutolysisBacillus subtilisBacteriaBiochemicalBiochemistryBiogenesisBiologicalBiologyCell CycleCell WallCell surfaceCellsCessation of lifeChildCleaved cellComplexCytolysisDevelopmentDiseaseDrug TargetingDrug resistanceElderlyEnzymesEscherichia coliExposure toFutureGeneticGenetic ScreeningGenetic studyGram-Positive BacteriaGrowthHydrolaseIncidenceInfectionInnate Immune SystemJointsKnowledgeLaboratoriesLifeLightMembrane ProteinsMethodsMicroscopyModelingModernizationMolecular ProfilingMonobactamsMorphogenesisMorphologyN-Acetylmuramoyl-L-alanine AmidaseOrganismPathogenesisPathway interactionsPatternPenicillin-Binding ProteinsPeptidesPeptidoglycanPeptidoglycan glycosyltransferasePeptidyltransferasePharmaceutical PreparationsPhasePhosphorylationPhosphotransferasesPlayPneumococcal vaccinePneumoniaPolymersPolysaccharidesProcessProteinsPublishingReactionRegulationResearchResistanceRodRoleStaphylococcus aureusStreptococcus pneumoniaeStressStructureSurfaceSystemTeichoic AcidsTestingVaccine TherapyVaccinesVirulenceVirulence FactorsWorkbeta-Lactamscell envelopecrosslinkenzyme activityexperimental studygenetic analysishuman pathogenin vitro activityinsightlipoteichoic acidnovelpathogenpathogenic bacteriapolymerizationpolypeptidepreventprogramsreconstitutionresponsesuccesstherapeutic developmentvaccine-induced immunityvirtual
项目摘要
PROJECT SUMMARY
The cell surface of pathogenic bacteria contains many key virulence factors that are used to interface with the
host. Cell surface polymers also contain the molecular signatures recognized by the innate immune system to
activate a defensive response, and surface molecules or their biogenesis pathways serve as important targets
for many of our most effective vaccine and antibiotic therapies. A better understanding of the mechanisms
responsible for bacterial surface assembly will therefore impact virtually all areas of pathogenesis research and
inform the development of new treatments for infections. Although some aspects of cell surface assembly can
be inferred from studies of non-pathogenic organisms, results from the models will never be entirely predictive.
Departures from the model are likely to be especially pronounced for pathogens like Streptococcus
pneumoniae (Sp) that adopt a different (ovoid) morphology and grow via distinct mechanisms from rod-shaped
organisms like Escherichia coli and Bacillus subtilis where studies of cell surface assembly have traditionally
been investigated. Sp is a major cause of life-threatening disease in young children and older adults, and the
incidence of drug-resistant infections with this organism is on the rise. The efficacy of the polyvalent Sp
vaccine is also declining due to the emergence of strains with altered surface polysaccharides that escape
vaccine-induced immunity. It is therefore important to identify new ways of disabling Sp growth. To do so, we
have initiated a program to investigate cell surface assembly in Sp that leverages the joint expertise of the
Rudner and Bernhardt laboratories in cell wall biogenesis, gram-positive biology, microscopy, biochemistry,
and genetics. Importantly, our approach is not limited to the characterization of homologs of well-studied cell
morphogenesis factors from the rod-shaped model organisms. Instead we are taking advantage of forward
genetic screens powered by modern sequencing methods to discover new players and biological mechanisms
involved in Sp growth. Our preliminary genetic analyses have uncovered two novel regulators of the penicillin-
binding proteins (PBPs) of Sp. These are the first set of factors identified in gram-positive bacteria that control
the activity of these critical cell wall synthases. The first aim of the project will investigate the mechanism by
which these factors modulate PBP activity and connect the function of these enzymes with other components
of the morphogenetic system. In addition to controlling PBP activity, proper surface assembly also requires the
regulation of enzymes that cleave the cell wall. The factors governing the activity of these enzymes are poorly
understood in all bacteria. Our second aim will build on promising results where we have identified a regulatory
role for surface polymers called lipoteichoic acids (LTAs) in controlling the activity of the cell wall hydrolase
LytA responsible for Sp cell lysis following beta-lactam treatment. Overall, our results promise to uncover new
ways of either blocking cell wall assembly or triggering autolysis for therapeutic development.
项目概要
病原菌的细胞表面含有许多关键的毒力因子,用于与细菌相互作用。
主持人。细胞表面聚合物还含有先天免疫系统识别的分子特征
激活防御反应,表面分子或其生物发生途径作为重要目标
用于我们许多最有效的疫苗和抗生素疗法。更好地理解机制
因此,负责细菌表面组装的细菌实际上将影响发病机制研究的所有领域
为感染新疗法的开发提供信息。尽管细胞表面组装的某些方面可以
从非病原生物的研究可以推断,模型的结果永远不会完全具有预测性。
对于链球菌等病原体来说,与模型的偏离可能尤其明显
肺炎杆菌 (Sp) 采用不同的(卵圆形)形态,并通过与杆状不同的机制生长
传统上,对大肠杆菌和枯草芽孢杆菌等生物体的细胞表面组装的研究
被调查。 Sp 是幼儿和老年人中危及生命的疾病的主要原因,并且
这种生物体的耐药性感染的发生率正在上升。多价Sp的功效
由于表面多糖发生改变的菌株的出现,疫苗的使用也在减少
疫苗诱导的免疫。因此,找到抑制 Sp 生长的新方法非常重要。为此,我们
启动了一项研究 Sp 细胞表面组装的计划,该计划利用了
鲁德纳和伯恩哈特实验室从事细胞壁生物发生、革兰氏阳性生物学、显微镜、生物化学、
和遗传学。重要的是,我们的方法不仅限于充分研究的细胞同系物的表征
来自杆状模型生物的形态发生因子。相反,我们正在利用前进的优势
由现代测序方法支持的遗传筛选,以发现新的参与者和生物机制
参与 Sp 的生长。我们的初步遗传分析发现了青霉素的两种新型调节因子——
Sp 的结合蛋白 (PBP)。这些是在革兰氏阳性菌中确定的第一组控制因素
这些关键细胞壁合酶的活性。该项目的首要目标是通过以下方式研究该机制:
这些因素调节 PBP 活性并将这些酶的功能与其他成分联系起来
的形态发生系统。除了控制 PBP 活性外,正确的表面组装还需要
调节裂解细胞壁的酶。控制这些酶活性的因素很差
在所有细菌中都可以理解。我们的第二个目标将建立在有希望的结果之上,我们已经确定了监管
称为脂磷壁酸 (LTA) 的表面聚合物在控制细胞壁水解酶活性中的作用
LytA 负责 β-内酰胺处理后 Sp 细胞的裂解。总的来说,我们的结果有望发现新的
阻止细胞壁组装或触发自溶以进行治疗开发的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID Z RUDNER其他文献
DAVID Z RUDNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID Z RUDNER', 18)}}的其他基金
Identification and characterization of a comprehensive set of factors required for sporulation and germination in Bacillus anthracis
炭疽芽孢杆菌孢子形成和萌发所需的一系列综合因素的鉴定和表征
- 批准号:
10510204 - 财政年份:2022
- 资助金额:
$ 43.01万 - 项目类别:
Growth and differentiation in Bacillus subtilis
枯草芽孢杆菌的生长和分化
- 批准号:
10404754 - 财政年份:2022
- 资助金额:
$ 43.01万 - 项目类别:
Growth and differentiation in Bacillus subtilis
枯草芽孢杆菌的生长和分化
- 批准号:
10630235 - 财政年份:2022
- 资助金额:
$ 43.01万 - 项目类别:
Identification and characterization of a comprehensive set of factors required for sporulation and germination in Bacillus anthracis
炭疽芽孢杆菌孢子形成和萌发所需的一系列综合因素的鉴定和表征
- 批准号:
10632069 - 财政年份:2022
- 资助金额:
$ 43.01万 - 项目类别:
Cell Envelope Homeostasis in Bacillus subtilis
枯草芽孢杆菌的细胞包膜稳态
- 批准号:
10335184 - 财政年份:2019
- 资助金额:
$ 43.01万 - 项目类别:
Cell Envelope Homeostasis in Bacillus subtilis
枯草芽孢杆菌的细胞包膜稳态
- 批准号:
10093999 - 财政年份:2019
- 资助金额:
$ 43.01万 - 项目类别:
Cell surface biogenesis in Streptococcus pneumoniae
肺炎链球菌的细胞表面生物合成
- 批准号:
10543050 - 财政年份:2019
- 资助金额:
$ 43.01万 - 项目类别:
Fluorescence Microscope for Time-Lapse Imaging of Bacteria
用于细菌延时成像的荧光显微镜
- 批准号:
7792067 - 财政年份:2010
- 资助金额:
$ 43.01万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 43.01万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 43.01万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 43.01万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 43.01万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 43.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 43.01万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 43.01万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 43.01万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 43.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 43.01万 - 项目类别:
Grant-in-Aid for Early-Career Scientists