Growth and differentiation in Bacillus subtilis

枯草芽孢杆菌的生长和分化

基本信息

  • 批准号:
    10630235
  • 负责人:
  • 金额:
    $ 63.04万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY/ABSTRACT The proposed studies are part of our long-term effort to elucidate fundamental mechanisms underlying chromosome dynamics and bacterial envelope biogenesis in the bacterium Bacillus subtilis. Compaction of replicated chromosomes into morphologically and spatially distinct sister chromatids is essential for faithful DNA segregation in all organisms. The goal of our research is to broadly elucidate how B. subtilis organizes and segregates its chromosomes but we have placed particular emphasis on defining the activity and function of the broadly conserved SMC condensin complex in these processes. Our studies have revealed that these ring-shaped ATPases extrude DNA loops. Loop extrusion ensures that these complexes act in cis drawing DNA in on itself and away from its sister chromosome. This activity can explain how SMC complexes can resolve newly replicated origins in bacteria and sister chromatids in eukaryotes. Our future research seeks to establish whether loop extrusion mediates origin resolution and the extent to which it drives the dynamic rearrangements of the chromosome during the replication-segregation cycle. Separately, we will define the molecular basis for site-specific unloading of SMC complexes by XerD at the replication terminus. Analysis of chromosome dynamics in this simple bacterial system will provide mechanistic insight and a level of resolution not possible in more complex organisms. The bacterial cell wall peptidoglycan (PG) is composed of long glycan strands cross-linked together by short peptides. This three-dimensional meshwork protects the cell from osmotic lysis, determines shape, and its assembly is the target of some of our most successful antibiotics. Accordingly, a deeper understanding of cell wall biogenesis has broad implications for both basic bacterial cell biology and therapeutic development. Research over the last half century has identified virtually all the factors involved in envelope assembly. A major gap in our knowledge is how these enzymes are coordinated with each other and how the cell monitors the envelope for defects and directs their repair. Our future research is focused on three signal transduction pathways that play central roles in these processes. The WalR-WalK two-component signaling system is involved in the homeostatic control of cell wall hydrolases required for growth. The SigI-RsgI pathway monitors the cell wall meshwork and induces PG remodeling enzymes when it identifies defects. Finally, the SigM-YhdLK pathway monitors the universal lipid carrier undecaprenyl-phosphate and prioritizes its use for cell wall synthesis. We seek to define how these pathways function in molecular detail. Our findings will provide broadly relevant principles for envelope assembly and maintenance in all bacteria.
项目总结/文摘

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The DedA superfamily member PetA is required for the transbilayer distribution of phosphatidylethanolamine in bacterial membranes.
Bacterial SEAL domains undergo autoproteolysis and function in regulated intramembrane proteolysis.
细菌 SEAL 结构域经历自身蛋白水解并在调节的膜内蛋白水解中发挥作用。
  • DOI:
    10.1101/2023.06.27.546760
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brogan,AnnaP;Habib,Cameron;Hobbs,SamuelJ;Kranzusch,PhilipJ;Rudner,DavidZ
  • 通讯作者:
    Rudner,DavidZ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

DAVID Z RUDNER其他文献

DAVID Z RUDNER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('DAVID Z RUDNER', 18)}}的其他基金

Identification and characterization of a comprehensive set of factors required for sporulation and germination in Bacillus anthracis
炭疽芽孢杆菌孢子形成和萌发所需的一系列综合因素的鉴定和表征
  • 批准号:
    10510204
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
Growth and differentiation in Bacillus subtilis
枯草芽孢杆菌的生长和分化
  • 批准号:
    10404754
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
Identification and characterization of a comprehensive set of factors required for sporulation and germination in Bacillus anthracis
炭疽芽孢杆菌孢子形成和萌发所需的一系列综合因素的鉴定和表征
  • 批准号:
    10632069
  • 财政年份:
    2022
  • 资助金额:
    $ 63.04万
  • 项目类别:
Cell Envelope Homeostasis in Bacillus subtilis
枯草芽孢杆菌的细胞包膜稳态
  • 批准号:
    10335184
  • 财政年份:
    2019
  • 资助金额:
    $ 63.04万
  • 项目类别:
Cell Envelope Homeostasis in Bacillus subtilis
枯草芽孢杆菌的细胞包膜稳态
  • 批准号:
    10093999
  • 财政年份:
    2019
  • 资助金额:
    $ 63.04万
  • 项目类别:
Cell surface biogenesis in Streptococcus pneumoniae
肺炎链球菌的细胞表面生物合成
  • 批准号:
    10543050
  • 财政年份:
    2019
  • 资助金额:
    $ 63.04万
  • 项目类别:
Cell surface biogenesis in Streptococcus pneumoniae
肺炎链球菌的细胞表面生物合成
  • 批准号:
    10318928
  • 财政年份:
    2019
  • 资助金额:
    $ 63.04万
  • 项目类别:
Bacteriology PhD Training Program
细菌学博士培养计划
  • 批准号:
    10158444
  • 财政年份:
    2017
  • 资助金额:
    $ 63.04万
  • 项目类别:
Bacteriology PhD Training Program
细菌学博士培养计划
  • 批准号:
    9924440
  • 财政年份:
    2017
  • 资助金额:
    $ 63.04万
  • 项目类别:
Fluorescence Microscope for Time-Lapse Imaging of Bacteria
用于细菌延时成像的荧光显微镜
  • 批准号:
    7792067
  • 财政年份:
    2010
  • 资助金额:
    $ 63.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了