Ion permeation, lipid flipping, and membrane remodeling by TMEM16 proteins
TMEM16 蛋白的离子渗透、脂质翻转和膜重塑
基本信息
- 批准号:10320752
- 负责人:
- 金额:$ 35.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AnionsBinding SitesBiologicalBiological PhenomenaBlood Coagulation DisordersBlood PlateletsBlood coagulationBrain regionCalciumCell membraneCell physiologyCellsChargeChloride ChannelsCoagulation ProcessCollaborationsCryoelectron MicroscopyDataDevelopmentDiseaseElectrophysiology (science)EventExhibitsExposure toFamilyFamily memberFunctional disorderHumanImmune responseInflammatoryInflammatory ArthritisIon ChannelIonsJointsKineticsKnowledgeLabelLifeLipid BilayersLipid BindingLipidsMalignant NeoplasmsMeasuresMembraneMembrane ProteinsModelingMolecularMolecular ConformationMuscular DystrophiesMutagenesisNamesNeuronsNociceptionNociceptorsPain managementPathway interactionsPermeabilityPhosphatidylinositol 4,5-DiphosphatePhosphatidylserinesPhysiologicalPhysiological ProcessesPhysiologyPlayProductionPropertyProteinsProtocols documentationPublishingResolutionRoleSamplingScott syndromeSignal TransductionSiteSite-Directed MutagenesisSpecificityStrokeStructureTestingThinnessTissuesVesiclebiophysical propertiesdesignexperimental studyhydrophilicityinsightlink proteinmembermicrovesiclesmutantneuronal excitabilitynovel therapeuticsparalogous geneprotein functionscreeningsimulationsmall moleculetargeted treatmenttumor progressionvoltage
项目摘要
Project Summary/Abstract
Calcium activated Chloride Channels (CaCCs) and other TMEM16 family members form ion channels and/or
lipid scramblases that help orchestrate a large number of cellular processes. Humans express 10 different
paralogs labeled TMEM16A-K (skipping I) that are expressed throughout the body, and they aid in diverse
phenomena including coagulation of the blood, suppression of inflammatory signals in the joints, control of pain
through nociceptive neurons, and modulating neuronal excitability in multiple brain regions – just to name a
few. How this family can be involved in so many different physiological processes remains an intriguing open
question. The founding member (TMEM16A) was cloned by 3 labs (including the Jan lab) in 2008 making it
possible to elucidate the biological roles listed above, but also ushering in the ability to dissect the biophysical
properties of these proteins. In the following years, the Jan lab employed mutagenesis screens,
electrophysiology, and small molecule screening to uncover the ion conduction, lipid scrambling, and gating
properties of TMEM16A and F in addition to solving high resolution cryo-EM structures (in collaboration with
the Cheng lab) of TMEM16A (a Cl- channel) and structures of TMEM16F (a dual scramblase/ion channel).
Meanwhile, the Grabe lab was the first to show in atomic detail how nhTMEM16 (a fungal scramblase) flips
lipids by inducing large-scale deformations in the membrane that thin the bilayer near a hydrophilic grove that
aids polar headgroups passing from one leaflet to the other. Despite these advances, fundamental questions
about the function of these proteins remain that we intend to answer here. First, phosphatidylserine (PS)
exposure to the outer leaflet of the plasma membrane via TMEM16F is the key signaling event that initiates
platelet-dependent coagulation and microvesicle (MV) production; however, no one has demonstrated how a
TMEM16 flips a negatively charged PS molecule at the atomic level under physiological conditions, the lipid
specificity of TMEM16s is poorly understood, and it has been suggested that scramblases may also
accomplish lipid flipping via an “out of the groove” mode in addition to the one revealed by the Grabe lab.
Second, we hypothesize that Cl- conduction occurs via a dedicated pore shielded from the membrane in Cl-
selective CaCC, but despite the existence of many TMEM16A structures, this has not been shown. We also
hypothesize that scramblases exhibit selectivity that is lipid-dependent because ions co-permeate with lipids at
the protein-membrane interface. Together, our studies will reveal basic mechanisms related to how TMEM16
family members carry out a diverse set of biological phenomena.
项目总结/摘要
钙激活的氯离子通道(CaCC)和其他TMEM 16家族成员形成离子通道和/或
帮助协调大量细胞过程的脂质乱序酶。人类表达了10种不同的
标记为TMEM 16 A-K(跳跃I)的旁系同源物在整个身体中表达,并且它们有助于多种
包括血液凝固、关节炎性信号抑制、疼痛控制
通过伤害感受神经元,并调节多个大脑区域的神经元兴奋性-仅举一例。
几个这个家族如何参与这么多不同的生理过程仍然是一个有趣的开放
问题创始成员(TMEM 16 A)在2008年被3个实验室(包括Jan实验室)克隆,
可能阐明上面列出的生物学作用,但也带来了解剖生物物理学的能力。
这些蛋白质的特性。在接下来的几年里,简实验室采用了诱变筛选,
电生理学和小分子筛选,以揭示离子传导,脂质扰乱和门控
除了解决高分辨率冷冻EM结构之外,TMEM 16 A和F的特性(与合作
Cheng实验室)和TMEM 16 F(双扰频酶/离子通道)的结构。
与此同时,Grabe实验室是第一个以原子细节展示nhTMEM 16(一种真菌乱序酶)如何翻转的实验室。
通过诱导膜的大规模变形,使亲水性格罗夫附近的双层变薄,
有助于极性头基从一个小叶传递到另一个小叶。尽管取得了这些进展,
关于这些蛋白质的功能,我们打算在这里回答。第一,磷脂酰丝氨酸(PS)
通过TMEM 16 F暴露于质膜的外小叶是启动细胞凋亡的关键信号事件。
血小板依赖性凝血和微囊泡(MV)的产生;然而,没有人已经证明,
TMEM 16在生理条件下在原子水平上翻转带负电荷的PS分子,
TMEM 16 s的特异性知之甚少,并且已经提出乱序酶也可能
除了Grabe实验室揭示的模式外,还通过“走出凹槽”模式完成脂质翻转。
其次,我们假设氯离子传导是通过与氯离子膜屏蔽的专用孔隙发生的
选择性CaCC,但尽管存在许多TMEM 16 A结构,但这一点尚未得到证实。我们也
假设乱序酶表现出依赖于脂质选择性,因为离子在
蛋白质-膜界面。总之,我们的研究将揭示与TMEM 16
家庭成员执行一系列不同的生物现象。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Grabe其他文献
Michael Grabe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Grabe', 18)}}的其他基金
Ion permeation, lipid flipping, and membrane remodeling by TMEM16 proteins
TMEM16 蛋白的离子渗透、脂质翻转和膜重塑
- 批准号:
10531602 - 财政年份:2021
- 资助金额:
$ 35.69万 - 项目类别:
Computer simulations of lysosomal and osteoclast microphysiology
溶酶体和破骨细胞微生理学的计算机模拟
- 批准号:
8793360 - 财政年份:2012
- 资助金额:
$ 35.69万 - 项目类别:
Computer simulations of lysosomal and osteoclast microphysiology
溶酶体和破骨细胞微生理学的计算机模拟
- 批准号:
8226447 - 财政年份:2012
- 资助金额:
$ 35.69万 - 项目类别:
UNDERSTANDING THE MECHANICS OF ENERGY CONVERSION IN NA+-DEPENDENT CO-TRANSPORTE
了解 NA 相关协同运输中的能量转换机制
- 批准号:
8364190 - 财政年份:2011
- 资助金额:
$ 35.69万 - 项目类别:
相似海外基金
Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
- 批准号:
24K15172 - 财政年份:2024
- 资助金额:
$ 35.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of protein crystal templates with multiple binding sites for tracking metal complex reactions.
设计具有多个结合位点的蛋白质晶体模板,用于跟踪金属络合物反应。
- 批准号:
23K04928 - 财政年份:2023
- 资助金额:
$ 35.69万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
- 批准号:
10744934 - 财政年份:2023
- 资助金额:
$ 35.69万 - 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
- 批准号:
573688-2022 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
University Undergraduate Student Research Awards
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10704557 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
- 批准号:
10537846 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
Identifying new types of inhibitors in quinone binding sites in photosynthetic enzymes
鉴定光合酶醌结合位点的新型抑制剂
- 批准号:
2753921 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
Studentship
Development of broad nanovaccines targeting diverse coronavirus receptor-binding sites
开发针对不同冠状病毒受体结合位点的广泛纳米疫苗
- 批准号:
10328140 - 财政年份:2022
- 资助金额:
$ 35.69万 - 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
- 批准号:
10621368 - 财政年份:2021
- 资助金额:
$ 35.69万 - 项目类别:
SBIR Phase I: Nonlinear optical method for identifying protein-ligand binding sites
SBIR 第一阶段:识别蛋白质-配体结合位点的非线性光学方法
- 批准号:
2111821 - 财政年份:2021
- 资助金额:
$ 35.69万 - 项目类别:
Standard Grant














{{item.name}}会员




