A Human-Mimetic AI System for Automatic, Passive and Objective Dietary Assessment
用于自动、被动和客观饮食评估的仿人人工智能系统
基本信息
- 批准号:10320465
- 负责人:
- 金额:$ 65.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptedAdultAffectAlgorithmsAmericanArtificial IntelligenceBiomedical EngineeringBiomimeticsCardiovascular DiseasesCellular PhoneCenters for Disease Control and Prevention (U.S.)Cessation of lifeChestChildChronic DiseaseComplexConsumptionCountryDataDatabasesDeveloped CountriesDevicesDiabetes MellitusDietDietary AssessmentDietary intakeDieteticsDimensionsEatingEvaluationExpert SystemsEyeFeedbackFoodFood EnergyFutureGoalsGoldHabitsHealthHealth care facilityHealthcareHeart DiseasesHumanImageIndividualIntakeLabelLifeLife ExpectancyLife StyleLinkMalignant NeoplasmsManualsModelingNutrientNutritionalNutritional ScienceObesityOutputParticipantPatient Self-ReportPerformancePersonsPlayPrivacyProblem SolvingProcessPublic HealthRecordsReportingResearchResearch PersonnelRiskRisk FactorsRoleShapesSignal TransductionSystemTechnologyTrainingUnhealthy DietUpdateVolitionartificial intelligence algorithmbaseburden of illnesscancer typecomputerized data processingconvolutional neural networkdeep learningdesigndietaryeffective interventionfield studygood diethuman diseasehuman subjectimprovedinfancymathematical modelmicroelectronicsmimeticsneural networkobesity managementoperationoverweight adultsrobotic systemsuccesstoolvalidation studieswearable device
项目摘要
A Human-Mimetic AI System for Automatic, Passive and Objective Dietary Assessment
Unhealthy diet is strongly linked to risks of chronic diseases, such as cardiovascular diseases,
diabetes and certain types of cancer. The Global Burden of Disease Study has found that, among
the top 17 risk factors, poor diet is overwhelmingly the No. 1 risk factor for human diseases.
Despite the strong connection between diet and health, unhealthy foods with large portion sizes
are widely consumed. Currently, 68.5% of U.S. adults are overweight, among the highest in
developed countries. The recent decline in U.S. life expectancy sent another alarming signal
about the general health of the American people. Understanding how the diet-related risk factors
affect people’s health and finding effective ways to empower them in improving lifestyle habits are
among the most important tasks in public health. Unfortunately, dietary assessment in real-world
settings has been exceedingly complex and inaccurate to implement. Technology is needed that
allows researchers to assess dietary intake easily and accurately in real world settings so that
effective intervention to manage obesity and related chronic diseases can be developed. We
propose a biomedical engineering project to address the dietary assessment problem,
taking advantage of advanced mathematical modeling, wearable electronics and artificial
intelligence.
Our research team has been improving the ability to assess diet for over a decade. We have
designed the eButton, a small wearable device pinned on clothes in front of the chest, capable of
collecting image-based dietary data objectively and passively (i.e., without depending on subject’s
self-report or volitional operation of the device). We have also developed algorithms to compute
food volumes and nutrients from images. Since the eButton was developed, it has been used by
many researchers in the U.S. and other countries for objective and passive diet-intake studies in
both adults and children.
Despite the past successes, there have been two lingering critical problems associated with
the objective and passive dietary assessment using wearable devices: 1) substantial manual
efforts are required for researchers to visually examine image data to identify foods and estimate
their volumes (portion sizes), and 2) there are privacy concerns about researchers’ viewing of
participants’ real-life images. Although solving these problems could enable the eButton and other
wearable devices for large-scale diet-intake studies, we were not able to find effective solutions
until recently when Artificial intelligence (AI) emerged. Advanced AI systems, especially those
based on deep learning, can be trained by large amounts of labeled data to produce results
comparable or even superior to those produced by human in numerous fields of applications. AI
technology is also a powerful tool for dietary assessment, potentially providing an ideal solution
to the two previously mentioned problems. We thus propose to develop a human-mimetic AI
system to recognize foods from images, estimate portion sizes, and find energy and nutrient
values from a database in a fully automatic process. Using the AI approach, there will be no need
for researchers to view participants’ real-life images, and the AI system well-respects individuals’
privacy because it is trained to recognizes human foods only, nothing else.
Currently, the performances of existing AI systems are limited by the extensive variety and
high variability of human foods, insufficient training data, and difficulty in finding appropriate
nutritional information from food databases. In this application, we propose a new strategy to
personalize the AI system for each research participant using an advanced mathematical model
of personal food choices. With this personalization step, the dimensionality of our envisioned AI
system can be reduced drastically, and our goal of automatic, objective and passive dietary
assessment can be reached realistically. We also propose to improve the electronic hardware
and develop a biomimetic camera to enlarge the field of view for the eButton. Finally, we will
conduct a thorough evaluation of the personalized AI system in real-world settings using human
subjects.
一种用于自动,被动和客观饮食评估的人类模仿AI系统
不健康的饮食与慢性疾病的风险(例如心血管疾病)密切相关,
糖尿病和某些类型的癌症。全球疾病的负担研究发现,
前17个危险因素,饮食不良是人类疾病的第一危险因素。
尽管饮食与健康之间有着密切的联系,但不健康的食物具有很大的尺寸
被广泛消耗。目前,美国68.5%的美国成年人超重,其中最高
发达国家。美国最近的预期寿命下降发出了另一个令人震惊的信号
关于美国人民的一般健康。了解与饮食相关的风险因素如何
影响人们的健康,并找到有效的方法来赋予他们改善生活方式习惯的能力
公共卫生中最重要的任务之一。不幸的是,现实世界中的饮食评估
设置非常复杂,无法实施。需要技术
允许研究人员在现实世界中轻松,准确地评估饮食摄入量,以便
可以开发有效管理肥胖和相关慢性疾病的干预措施。我们
提案一个生物医学工程项目,以解决饮食评估问题,
利用高级数学建模,可穿戴电子设备和人造
智力。
我们的研究团队已经提高了十多年来评估饮食的能力。我们有
设计了Ebutton,这是一种固定在胸前的衣服上的小型可穿戴设备,能够
客观和被动地收集基于图像的饮食数据(即,不依赖于受试者的
设备的自我报告或意志操作)。我们还开发了计算算法
图像中的食物量和营养。自从开发ebutton以来,它已被使用
美国和其他国家的许多研究人员在客观和被动的饮食感染研究中
成人和儿童。
尽管取得了过去的成功,但与
使用可穿戴设备的客观和被动饮食评估:1)大量手册
研究人员需要精力检查图像数据以识别食物并估计
它们的数量(部分尺寸),以及2)关于研究人员观看的隐私问题
参与者的真实图像。尽管解决这些问题可以使Ebutton和其他
可穿戴设备用于大规模饮食量研究,我们无法找到有效的解决方案
直到最近才出现人工智能(AI)。高级AI系统,尤其是那些
基于深度学习,可以通过大量标记数据培训以产生结果
与人类在众多应用领域中所产生的那些相当甚至优越。人工智能
技术也是饮食评估的强大工具,有可能提供理想的解决方案
前面提到的两个问题。因此,我们建议开发人类模仿AI
从图像,估计份量估计食物并找到能量和养分的系统
在全自动过程中来自数据库的值。使用AI方法,将不需要
供研究人员查看参与者的真实图像,而AI系统非常重视个人
隐私是因为它经过训练,只能识别人类食品,别无其他。
目前,现有AI系统的性能受到广泛种类的限制,
人类食物的高度差异,培训数据不足以及难以找到合适的
食品数据库的营养信息。在此应用程序中,我们提出了一种新的策略
使用高级数学模型来个性化每个研究的AI系统
个人食物的选择。通过这个个性化步骤,我们设想的AI的维度
可以大幅度降低系统,我们的目标是自动,客观和被动饮食
可以现实地进行评估。我们还建议改善电子硬件
并开发一个仿生相机,以扩大Ebutton的视野。最后,我们会的
使用人类在现实环境中对个性化的AI系统进行彻底评估
主题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MINGUI SUN其他文献
MINGUI SUN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MINGUI SUN', 18)}}的其他基金
A Human-Mimetic AI System for Automatic, Passive and Objective Dietary Assessment
用于自动、被动和客观饮食评估的仿人人工智能系统
- 批准号:
10541843 - 财政年份:2021
- 资助金额:
$ 65.78万 - 项目类别:
Wearable eButton for Evaluation of Energy Balance with Environmental Context and
用于评估环境背景下的能量平衡的可穿戴电子按钮
- 批准号:
8728787 - 财政年份:2012
- 资助金额:
$ 65.78万 - 项目类别:
Wearable eButton for Evaluation of Energy Balance with Environmental Context and
用于评估环境背景下的能量平衡的可穿戴电子按钮
- 批准号:
8250717 - 财政年份:2012
- 资助金额:
$ 65.78万 - 项目类别:
Wearable eButton for Evaluation of Energy Balance with Environmental Context and
用于评估环境背景下的能量平衡的可穿戴电子按钮
- 批准号:
8543666 - 财政年份:2012
- 资助金额:
$ 65.78万 - 项目类别:
A Unified Sensor System for Ubiquitous Assessment of Diet and Physical Activity
用于无处不在的饮食和身体活动评估的统一传感器系统
- 批准号:
7489820 - 财政年份:2007
- 资助金额:
$ 65.78万 - 项目类别:
A Unified Sensor System for Ubiquitous Assessment of Diet and Physical Activity
用于无处不在的饮食和身体活动评估的统一传感器系统
- 批准号:
7490158 - 财政年份:2007
- 资助金额:
$ 65.78万 - 项目类别:
A Unified Sensor System for Ubiquitous Assessment of Diet and Physical Activity
用于无处不在的饮食和身体活动评估的统一传感器系统
- 批准号:
7896849 - 财政年份:2007
- 资助金额:
$ 65.78万 - 项目类别:
相似国自然基金
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
破解老年人数字鸿沟:老年人采用数字技术的决策过程、客观障碍和应对策略
- 批准号:72303205
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
通过抑制流体运动和采用双能谱方法来改进烧蚀速率测量的研究
- 批准号:12305261
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
采用多种稀疏自注意力机制的Transformer隧道衬砌裂缝检测方法研究
- 批准号:62301339
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Paid Sick Leave Mandates and Mental Healthcare Service Use
带薪病假规定和心理保健服务的使用
- 批准号:
10635492 - 财政年份:2023
- 资助金额:
$ 65.78万 - 项目类别:
Share plus: Continuous Glucose Monitoring with Data Sharing in Older Adults with T1D and Their Care Partners
分享加:患有 T1D 的老年人及其护理伙伴的持续血糖监测和数据共享
- 批准号:
10660793 - 财政年份:2023
- 资助金额:
$ 65.78万 - 项目类别:
The impact of Medicaid expansion on the rural mortality penalty in the United States
医疗补助扩大对美国农村死亡率的影响
- 批准号:
10726695 - 财政年份:2023
- 资助金额:
$ 65.78万 - 项目类别:
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 65.78万 - 项目类别: