Controlling the flux of sphingosine-1-phosphate in vivo
控制体内 1-磷酸鞘氨醇的通量
基本信息
- 批准号:10319600
- 负责人:
- 金额:$ 68.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAcute Renal Failure with Renal Papillary NecrosisAdverse eventAffectAgonistAnimal ModelAutoimmune DiseasesBiologicalBiological AssayBiological AvailabilityBiological TestingBiologyBloodBlood VesselsBradycardiaCardiacCellsChemicalsChronic Kidney FailureClinicClinicalClinical TrialsComplexCoupledCytoplasmDataDisease modelDoseDrug KineticsDrug TargetingEndothelial CellsEndotheliumEnvironmentEnzymesErythrocytesExperimental Autoimmune EncephalomyelitisGenerationsGenetic studyGoalsImmuneImmune System DiseasesImmune responseImmune systemImmunomodulatorsImmunooncologyImmunosuppressive AgentsInorganic Phosphate TransporterLeadLeukocytesLipidsLymphLymphocyteLymphocyte CountLymphoid TissueLymphopeniaMasksMedicineMethodsModelingModificationMultiple SclerosisMusMutant Strains MiceOralPathway interactionsPeripheral Blood LymphocytePharmaceutical PreparationsPharmacodynamicsPharmacologyPhosphorylationPhysiologicalPlasmaPositioning AttributeProcessPropertyProteinsReperfusion InjuryRoleSPHK1 enzymeSaccharomyces cerevisiaeSaccharomycetalesSecond Messenger SystemsSeriesSignal TransductionSignaling MoleculeSphingosineSphingosine-1-Phosphate ReceptorTestingTherapeuticTherapeutic AgentsThymus GlandTissuesToxic effectTreatment EfficacyValidationbasecell motilitychemical synthesisdesensitizationedg-1 Proteinextracellulargenetic manipulationimmune system functionimmunoregulationin vivoinhibitorkinase inhibitorlymph nodeslymphocyte traffickingmeetingsmelanomamigrationmultiple sclerosis treatmentototoxicitypre-clinicalprogramsrenal ischemiascreeningside effectsmall molecule librariessphingosine 1-phosphatesphingosine kinasesuccesstargeted agenttargeted biomarkertherapeutic targettooltransport inhibitor
项目摘要
Sphingosine 1-phosphate (S1P) chemotactic gradients are necessary for correct temporal and spatial positioning of immune cells while the blood-tissue S1P gradient supports endothelial barrier integrity. We propose now to provide a new method of modulating the immune system by changing the lymph-lymph node S1P gradient, which is crucial for lymphocyte trafficking. The initial indication that S1P gradients have a pivotal role in immune cell migration was the discovery of the mechanism of action of the immunosuppressive drug, fingolimod. This drug desensitizes lymphocyte S1P1 receptors, which renders these cells unable to migrate from secondary lymphoid tissues to the S1P rich environment of efferent lymph. Although ultimately successful as a medicine, fingolimod and other S1P1 receptor agonists have on-target cardiac and vascular toxicities, which necessitates additional strategies to modulate the immune response by manipulating S1P signaling. Studies with mutant mice predict that a viable alternative strategy is to eliminate the lymph-lymph node S1P gradient by inhibiting the transporter, Spns2, which supplies S1P from endothelial cells to efferent lymph. However, the Spns2 inhibitors that are required to test this idea are not available. As a first step in meeting this need, we took advantage of the toxicity of high levels of S1P in Saccharomyces cerevisiae to build an S1P transporter assay. We used this assay to screen our focused chemical library of S1P agonists and sphingosine kinase inhibitors and identified a hit compound that, after minimal chemical manipulation, resulted in a lead compound that drives the lymphopenia and reduction in plasma S1P expected of an Spns2 inhibitor. Through iterative chemical synthesis and pharmacologic testing, we will optimize our lead Spns2 inhibitor as well as discover and optimize additional chemical series of Spns2 inhibitors. Ultimately, we will generate potent Spns2 inhibitors with the pharmacokinetic properties suitable for in vivo applications. The selectivity of the Spns2 inhibitors will be ascertained by rigorous counter-screening against other S1P interacting proteins including S1P receptors, catabolic and anabolic enzymes and another, erythrocyte-specific, S1P transporter, Mfsd2b. In developing Spns2 inhibitors, we will use plasma S1P levels and peripheral blood lymphocyte counts as biomarkers of target engagement. Spns2 inhibitors will be deployed in a battery of disease models where immune-modulation is indicated. Further, we will assess our Spns2 inhibitors for potential adverse events associated with S1P signaling including vascular leak, bradycardia and ototoxicity. Optimally, our studies will validate Spns2 as a therapeutic target for immune system modulation. At a minimum, we will provide reliable chemical tool for exploring the complex biology of S1P.
鞘氨醇1-磷酸(S1P)趋化梯度是免疫细胞正确的时空定位所必需的,而血液组织S1P梯度支持内皮屏障的完整性。我们现在建议提供一种通过改变淋巴-淋巴结S1P梯度来调节免疫系统的新方法,这对淋巴细胞运输至关重要。S1P梯度在免疫细胞迁移中起关键作用的最初迹象是免疫抑制药物fingolimod的作用机制的发现。该药物使淋巴细胞S1P1受体脱敏,使这些细胞无法从次级淋巴组织迁移到分泌淋巴中富含S1P的环境。尽管最终作为药物获得了成功,但芬戈莫德和其他S1P1受体激动剂具有靶向心脏和血管毒性,这就需要通过操纵S1P信号来调节免疫反应的额外策略。对突变小鼠的研究预测,一种可行的替代策略是通过抑制转运蛋白Spns2来消除淋巴-淋巴结的S1P梯度,Spns2将S1P从内皮细胞输送到传出淋巴。然而,测试这一想法所需的Spns2抑制剂尚不可用。作为满足这一需求的第一步,我们利用酿酒酵母中高浓度S1P的毒性建立了S1P转运体实验。我们使用该试验筛选了我们的S1P激动剂和鞘氨醇激酶抑制剂的重点化学文库,并确定了一种hit化合物,经过最小的化学操作,导致先导化合物驱动淋巴细胞减少和血浆S1P减少,这是Spns2抑制剂所期望的。通过反复的化学合成和药理学测试,我们将优化我们的先导Spns2抑制剂,并发现和优化其他Spns2抑制剂的化学系列。最终,我们将产生有效的Spns2抑制剂,具有适合体内应用的药代动力学特性。Spns2抑制剂的选择性将通过对其他S1P相互作用蛋白(包括S1P受体、分解代谢和合成代谢酶以及另一种红细胞特异性S1P转运蛋白Mfsd2b)的严格反筛选来确定。在开发Spns2抑制剂时,我们将使用血浆S1P水平和外周血淋巴细胞计数作为靶标参与的生物标志物。Spns2抑制剂将应用于一系列需要免疫调节的疾病模型。此外,我们将评估我们的Spns2抑制剂与S1P信号相关的潜在不良事件,包括血管泄漏、心动过缓和耳毒性。最终,我们的研究将验证Spns2作为免疫系统调节的治疗靶点。至少,我们将为探索S1P的复杂生物学提供可靠的化学工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN R. LYNCH其他文献
KEVIN R. LYNCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN R. LYNCH', 18)}}的其他基金
Controlling the flux of sphingosine-1-phosphate in vivo
控制体内 1-磷酸鞘氨醇的通量
- 批准号:
10542382 - 财政年份:2019
- 资助金额:
$ 68.95万 - 项目类别:
MD-PHAR Controlling sphingosine 1-phosphate synthesis and trafficking
MD-PHAR 控制 1-磷酸鞘氨醇合成和运输
- 批准号:
10157761 - 财政年份:2016
- 资助金额:
$ 68.95万 - 项目类别:
Controlling sphingosine 1-phosphate synthesis and trafficking
控制 1-磷酸鞘氨醇的合成和运输
- 批准号:
9330886 - 财政年份:2016
- 资助金额:
$ 68.95万 - 项目类别:
Molecular Pharmacology of Sphingosine 1-Phosphate
1-磷酸鞘氨醇的分子药理学
- 批准号:
8206342 - 财政年份:2004
- 资助金额:
$ 68.95万 - 项目类别:
Molecular Pharmacology of Sphingosine 1-Phosphate
1-磷酸鞘氨醇的分子药理学
- 批准号:
8309078 - 财政年份:2004
- 资助金额:
$ 68.95万 - 项目类别: