Controlling the flux of sphingosine-1-phosphate in vivo
控制体内 1-磷酸鞘氨醇的通量
基本信息
- 批准号:10542382
- 负责人:
- 金额:$ 68.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-15 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAcute Renal Failure with Renal Papillary NecrosisAdverse eventAffectAgonistAnimal ModelAutoimmune DiseasesBiologicalBiological AssayBiological AvailabilityBiological TestingBiologyBloodBlood VesselsBradycardiaCardiacCellsChemicalsChronic Kidney FailureClinicClinicalClinical TrialsComplexCoupledCytoplasmDataDisease modelDoseDrug KineticsDrug TargetingEndothelial CellsEndotheliumEnvironmentEnzymesErythrocytesExperimental Autoimmune EncephalomyelitisGenerationsGenetic studyGoalsImmuneImmune System DiseasesImmune responseImmune systemImmunooncologyImmunosuppressive AgentsInorganic Phosphate TransporterLeadLeukocytesLipidsLymphLymphocyteLymphocyte CountLymphoid TissueLymphopeniaMasksMedicineMethodsModelingModificationMultiple SclerosisMusMutant Strains MiceOralPathway interactionsPeripheral Blood LymphocytePharmaceutical PreparationsPharmacodynamicsPhosphorylationPhysiologicalPlasmaPositioning AttributeProcessPropertyProteinsReperfusion InjuryRoleSPHK1 enzymeSaccharomyces cerevisiaeSaccharomycetalesSecond Messenger SystemsSeriesSignal TransductionSignaling MoleculeSphingosineSphingosine-1-Phosphate ReceptorTestingTherapeuticTherapeutic AgentsThymus GlandTissuesToxic effectTreatment EfficacyValidationcell motilitychemical synthesisdesensitizationdrug-like compoundedg-1 Proteinextracellulargenetic manipulationimmune modulating agentsimmune system functionimmunoregulationin vivoinhibitorkinase inhibitorlymph nodeslymphocyte traffickingmeetingsmelanomamigrationmultiple sclerosis treatmentototoxicitypharmacologicpre-clinicalprogramsrenal ischemiascreeningside effectsmall molecule librariessphingosine 1-phosphatesphingosine kinasesuccesstargeted agenttargeted biomarkertherapeutic targettooltransport inhibitor
项目摘要
Sphingosine 1-phosphate (S1P) chemotactic gradients are necessary for correct temporal and spatial positioning of immune cells while the blood-tissue S1P gradient supports endothelial barrier integrity. We propose now to provide a new method of modulating the immune system by changing the lymph-lymph node S1P gradient, which is crucial for lymphocyte trafficking. The initial indication that S1P gradients have a pivotal role in immune cell migration was the discovery of the mechanism of action of the immunosuppressive drug, fingolimod. This drug desensitizes lymphocyte S1P1 receptors, which renders these cells unable to migrate from secondary lymphoid tissues to the S1P rich environment of efferent lymph. Although ultimately successful as a medicine, fingolimod and other S1P1 receptor agonists have on-target cardiac and vascular toxicities, which necessitates additional strategies to modulate the immune response by manipulating S1P signaling. Studies with mutant mice predict that a viable alternative strategy is to eliminate the lymph-lymph node S1P gradient by inhibiting the transporter, Spns2, which supplies S1P from endothelial cells to efferent lymph. However, the Spns2 inhibitors that are required to test this idea are not available. As a first step in meeting this need, we took advantage of the toxicity of high levels of S1P in Saccharomyces cerevisiae to build an S1P transporter assay. We used this assay to screen our focused chemical library of S1P agonists and sphingosine kinase inhibitors and identified a hit compound that, after minimal chemical manipulation, resulted in a lead compound that drives the lymphopenia and reduction in plasma S1P expected of an Spns2 inhibitor. Through iterative chemical synthesis and pharmacologic testing, we will optimize our lead Spns2 inhibitor as well as discover and optimize additional chemical series of Spns2 inhibitors. Ultimately, we will generate potent Spns2 inhibitors with the pharmacokinetic properties suitable for in vivo applications. The selectivity of the Spns2 inhibitors will be ascertained by rigorous counter-screening against other S1P interacting proteins including S1P receptors, catabolic and anabolic enzymes and another, erythrocyte-specific, S1P transporter, Mfsd2b. In developing Spns2 inhibitors, we will use plasma S1P levels and peripheral blood lymphocyte counts as biomarkers of target engagement. Spns2 inhibitors will be deployed in a battery of disease models where immune-modulation is indicated. Further, we will assess our Spns2 inhibitors for potential adverse events associated with S1P signaling including vascular leak, bradycardia and ototoxicity. Optimally, our studies will validate Spns2 as a therapeutic target for immune system modulation. At a minimum, we will provide reliable chemical tool for exploring the complex biology of S1P.
鞘氨醇1-磷酸(S1 P)趋化梯度是必要的正确的时间和空间定位的免疫细胞,而血液组织S1 P梯度支持内皮屏障的完整性。 我们现在提出通过改变淋巴-淋巴结S1 P梯度来提供一种调节免疫系统的新方法,这对淋巴细胞运输至关重要。S1 P梯度在免疫细胞迁移中具有关键作用的最初迹象是免疫抑制药物芬戈莫德的作用机制的发现。 这种药物使淋巴细胞S1 P1受体脱敏,使这些细胞不能从次级淋巴组织迁移到传出淋巴的富含S1 P的环境。 虽然芬戈莫德和其他S1 P1受体激动剂最终成功地作为一种药物,但它们具有靶向心脏和血管毒性,这需要额外的策略来通过操纵S1 P信号传导来调节免疫反应。 对突变小鼠的研究预测,一种可行的替代策略是通过抑制转运蛋白Spns 2来消除淋巴-淋巴结S1 P梯度,Spns 2将S1 P从内皮细胞供应到传出淋巴。 然而,测试这一想法所需的Spns 2抑制剂尚不可用。 作为满足这一需求的第一步,我们利用酿酒酵母中高水平S1 P的毒性来建立S1 P转运蛋白测定。 我们使用该测定筛选我们的S1 P激动剂和鞘氨醇激酶抑制剂的集中化学文库,并鉴定了一种命中化合物,该化合物在最小的化学操作后,导致导致Spns 2抑制剂预期的淋巴细胞减少和血浆S1 P减少的先导化合物。 通过反复的化学合成和药理学测试,我们将优化我们的主要Spns 2抑制剂,并发现和优化Spns 2抑制剂的其他化学系列。 最终,我们将产生具有适合体内应用的药代动力学特性的有效Spns 2抑制剂。 Spns 2抑制剂的选择性将通过针对其它S1 P相互作用蛋白质(包括S1 P受体、分解代谢和合成代谢酶以及另一种红细胞特异性S1 P转运蛋白Mfsd 2b)的严格反筛选来确定。 在开发Spns 2抑制剂时,我们将使用血浆S1 P水平和外周血淋巴细胞计数作为靶点结合的生物标志物。 Spns 2抑制剂将被部署在一系列疾病模型中,其中免疫调节是指征。 此外,我们将评估我们的Spns 2抑制剂与S1 P信号相关的潜在不良事件,包括血管渗漏,心动过缓和耳毒性。 最理想的是,我们的研究将验证Spns 2作为免疫系统调节的治疗靶点。 至少,我们将为探索S1 P的复杂生物学提供可靠的化学工具。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Imidazole-based sphingosine-1-phosphate transporter Spns2 inhibitors.
- DOI:10.1016/j.bmcl.2023.129516
- 发表时间:2023-10
- 期刊:
- 影响因子:2.7
- 作者:Chris Shrader;D. Foster;Y. Kharel;Tao Huang;Kevin R. Lynch;W. Santos
- 通讯作者:Chris Shrader;D. Foster;Y. Kharel;Tao Huang;Kevin R. Lynch;W. Santos
Assay of Sphingosine 1-phosphate Transporter Spinster Homolog 2 (Spns2) Inhibitors.
1-磷酸鞘氨醇转运蛋白 Spinster 同系物 2 (Spns2) 抑制剂的测定。
- DOI:10.1016/j.slasd.2023.07.001
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Kharel,Yugesh;Huang,Tao;Santos,WebsterL;Lynch,KevinR
- 通讯作者:Lynch,KevinR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN R. LYNCH其他文献
KEVIN R. LYNCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN R. LYNCH', 18)}}的其他基金
Controlling the flux of sphingosine-1-phosphate in vivo
控制体内 1-磷酸鞘氨醇的通量
- 批准号:
10319600 - 财政年份:2019
- 资助金额:
$ 68.95万 - 项目类别:
MD-PHAR Controlling sphingosine 1-phosphate synthesis and trafficking
MD-PHAR 控制 1-磷酸鞘氨醇合成和运输
- 批准号:
10157761 - 财政年份:2016
- 资助金额:
$ 68.95万 - 项目类别:
Controlling sphingosine 1-phosphate synthesis and trafficking
控制 1-磷酸鞘氨醇的合成和运输
- 批准号:
9330886 - 财政年份:2016
- 资助金额:
$ 68.95万 - 项目类别:
Molecular Pharmacology of Sphingosine 1-Phosphate
1-磷酸鞘氨醇的分子药理学
- 批准号:
8206342 - 财政年份:2004
- 资助金额:
$ 68.95万 - 项目类别:
Molecular Pharmacology of Sphingosine 1-Phosphate
1-磷酸鞘氨醇的分子药理学
- 批准号:
8309078 - 财政年份:2004
- 资助金额:
$ 68.95万 - 项目类别: