Controlling sphingosine 1-phosphate synthesis and trafficking
控制 1-磷酸鞘氨醇的合成和运输
基本信息
- 批准号:9330886
- 负责人:
- 金额:$ 52.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Renal Failure with Renal Papillary NecrosisAdrenergic alpha-AntagonistsAgonistAnimal ModelAutoimmune DiseasesBioavailableBiological AssayBiological AvailabilityBiologyBloodBlood VesselsBradycardiaCellsChemicalsChemistryClinicClinical TrialsComputer SimulationCrystallizationDataDevelopmentDiseaseDisease ProgressionDisease modelDockingDoseDrug KineticsDrug TargetingEndothelial CellsErythrocytesG-Protein-Coupled ReceptorsGoalsHematopoietic Stem Cell MobilizationHomology ModelingHumanImmuneImmune responseImmunosuppressive AgentsInjuryIsoenzymesKidneyKidney DiseasesLeadLeukocytesLibrariesLigandsLiquid substanceLymphLymphocyteLymphoidLymphoid TissueMalignant NeoplasmsMediatingMediator of activation proteinMedicineMethanolMethodsMolecularMultiple SclerosisMusOralOrganPathway interactionsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhysiologicalPlasmaProdrugsProductivityPropertyPyrrolidinesResolutionRodentRouteSepsisSickle CellSickle Cell AnemiaSignal TransductionSignaling MoleculeStructureStructure-Activity RelationshipSynthesis ChemistryTestingTherapeuticTherapeutic AgentsTissuesValidationVirus DiseasesWorkX-Ray Crystallographybasedesignedg-1 Proteinefficacy testingextracellularhuman diseaseimmune functionimmunoregulationimprovedin vivoinhibitor/antagonistinsightmacular edemamouse modelmultiple sclerosis patientnanomolarnovelnovel therapeutic interventionpreventprogramsscaffoldsphingosine 1-phosphatesphingosine kinasestructural biologysynergismtargeted agenttooltrafficking
项目摘要
Sphingosine kinases (SphK1, SphK2) catalyze the formation of an important extracellular mediator,
sphingosine 1-phosphate (S1P). A fundamental aspect of S1P biology is the large difference in S1P
abundance between blood or lymph (high) and tissue (low), which is termed the S1P vascular gradient. This
gradient maintains vascular endothelial barrier function and facilitates lymphocyte mobilization from lymphoid
tissues. Indeed, S1P1 receptor agonist drugs (e.g. fingolimod) are therapeutically beneficial because S1P
signaling is highly sensitive to changes in S1P gradient. We used our SphK2 inhibitors to demonstrate that
interdicting S1P signaling at the level of synthesis steepens the S1P vascular gradient by slowing S1P
clearance from the blood. This result suggests that SphK2 inhibitors will be extremely useful in treating
conditions where the endothelial barrier is compromised, e.g. acute kidney injury and sepsis. Although our
recently discovered SphK2 inhibitors are active in vivo, improvements in potency, oral availability and chemical
diversity are needed to advance them to the clinic. We will accomplish these goals by generating additional
inhibitors on our current chemical scaffold and by developing a novel second scaffold. The current scaffold
has also yielded a few SphK1 inhibitors but these lack potency at mouse SphK1, which precludes their testing
for efficacy in some key disease models. In contrast to SphK2, inhibition of Sphk1 decreases the S1P vascular
gradient and to probe the resulting physiological consequences, multiple inhibitors are needed. We will use
iterative rounds of synthesis and testing to generate a library of SphK1 inhibitors with emphases on increasing
their potency at mouse SphK1 and discovering inhibitors that have suitable pharmacokinetic properties in
rodents. To understand the molecular mechanism of SphK inhibition as well as to inform the synthetic
chemistry strategies, we will solve the structures of both isozymes with bound inhibitors using X-ray
crystallography. Finally, we will discover a blocker of the S1P exporter, SPNS2, which provides the S1P to
lymph and thereby maintains the S1P vascular gradient that is required for lymphocyte egress from lymphoid
organs to lymph. Currently, due to the unavailability of SPNS2 inhibitors, this particular approach to the
manipulation of S1P gradient and subsequent immunomodulation remains completely unexplored. The
strength of our program is the synergism in the combination of chemistry (Santos) and pharmacology (Lynch)
to which we now add structural biology (Faham). Our central theme of is to understand the therapeutic
potential of manipulating the S1P gradients either at the level of synthesis (SphK inhibition) or transport
(SPNS2 blockade). We have a track record of productivity that enabled a fundamental insight into S1P
biology, e.g. our discovery that SphK2 inhibition modulates S1P signaling to protect endothelial function, a new
therapeutic strategy. Now, we propose the development and detailed characterization of greatly improved
SphK inhibitors and to make the chemical tools necessary to interrogate SPNS2 as a potential drug target.
鞘氨醇激酶(SphK 1,SphK 2)催化重要的细胞外介质的形成,
1-磷酸鞘氨醇(S1 P)。S1 P生物学的一个基本方面是S1 P的巨大差异
血液或淋巴(高)和组织(低)之间的丰度,这被称为S1 P血管梯度。这
梯度维持血管内皮屏障功能,促进淋巴细胞从淋巴细胞动员
组织中实际上,S1 P1受体激动剂药物(例如芬戈莫德)是治疗有益的,因为S1 P
信号传导对S1 P梯度的变化高度敏感。我们使用SphK 2抑制剂证明,
在合成水平阻断S1 P信号通过减慢S1 P而使S1 P血管梯度变陡
从血液中清除。这一结果表明,SphK 2抑制剂将在治疗中非常有用。
内皮屏障受损的病症,例如急性肾损伤和脓毒症。虽然我们的
最近发现的SphK 2抑制剂在体内是有活性的,在效力、口服利用度和化学性质方面都有改善,
需要多样性来推动他们进入诊所。我们将通过创造更多的机会来实现这些目标。
抑制剂在我们当前的化学支架上,并通过开发新型的第二支架。目前的脚手架
也产生了一些SphK 1抑制剂,但这些抑制剂对小鼠SphK 1缺乏效力,这妨碍了它们的测试
在一些关键疾病模型中的疗效。与SphK 2相反,Sphk 1的抑制降低了S1 P血管紧张素Ⅱ的表达。
梯度和探测产生的生理后果,需要多种抑制剂。我们将使用
迭代合成和测试,以生成SphK 1抑制剂库,重点是增加
它们对小鼠SphK 1的效力,并发现具有合适的药代动力学特性的抑制剂,
啮齿动物为了了解SphK抑制的分子机制,并为合成SphK提供信息,
化学策略,我们将解决这两种同工酶的结构与结合抑制剂使用X射线
结晶学最后,我们将发现S1 P导出器SPNS 2的拦截器,它将S1 P提供给
淋巴,从而维持淋巴细胞从淋巴细胞中流出所需的S1 P血管梯度。
器官转移到淋巴目前,由于SPNS 2抑制剂的不可用,这种特定的方法,
S1 P梯度的操作和随后的免疫调节仍然完全未被探索。的
我们项目的优势在于化学(桑托斯)和药理学(林奇)的协同作用
我们现在加入结构生物学(Faham)。我们的中心主题是理解治疗
在合成(SphK抑制)或转运水平操纵S1 P梯度的潜力
(SPNS 2阻断)。我们有生产力的跟踪记录,可以从根本上洞察S1 P
生物学,例如,我们发现SphK 2抑制调节S1 P信号传导以保护内皮功能,这是一种新的
治疗策略现在,我们提出的发展和详细的表征大大改善
SphK抑制剂,并使必要的化学工具来询问SPNS 2作为一个潜在的药物靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN R. LYNCH其他文献
KEVIN R. LYNCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN R. LYNCH', 18)}}的其他基金
Controlling the flux of sphingosine-1-phosphate in vivo
控制体内 1-磷酸鞘氨醇的通量
- 批准号:
10542382 - 财政年份:2019
- 资助金额:
$ 52.77万 - 项目类别:
Controlling the flux of sphingosine-1-phosphate in vivo
控制体内 1-磷酸鞘氨醇的通量
- 批准号:
10319600 - 财政年份:2019
- 资助金额:
$ 52.77万 - 项目类别:
MD-PHAR Controlling sphingosine 1-phosphate synthesis and trafficking
MD-PHAR 控制 1-磷酸鞘氨醇合成和运输
- 批准号:
10157761 - 财政年份:2016
- 资助金额:
$ 52.77万 - 项目类别:
Molecular Pharmacology of Sphingosine 1-Phosphate
1-磷酸鞘氨醇的分子药理学
- 批准号:
8206342 - 财政年份:2004
- 资助金额:
$ 52.77万 - 项目类别:
Molecular Pharmacology of Sphingosine 1-Phosphate
1-磷酸鞘氨醇的分子药理学
- 批准号:
8309078 - 财政年份:2004
- 资助金额:
$ 52.77万 - 项目类别: