Enhancing bioremediation of groundwater co-contaminated by chlorinated volatile organic compounds and 1,4-dioxane using novel macrocyclic materials
使用新型大环材料增强氯化挥发性有机化合物和 1,4-二恶烷共同污染的地下水的生物修复
基本信息
- 批准号:10320966
- 负责人:
- 金额:$ 28.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2025-10-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdsorptionAerobicAffinityAnaerobic BacteriaBindingBiodegradationBiological AvailabilityBioreactorsBioremediationsBuffersCarcinogensChemistryComplexCoupledDioxanesEvaluationExcisionFoundationsGeometryGrowthHealthHumanIn SituKineticsLiteratureMaterials TestingMetabolismMicrobeMicrobial BiofilmsModelingPathway interactionsPerformancePeriodicityProcessReportingResearchResearch PersonnelSeriesSolventsStructureSurfaceThickTreatment EffectivenessTrichloroethanesTrichloroethyleneWaterWater SupplyWorkaqueousbasecomputer studiesdechlorinationdesignexperimental studyground waterhydrophilicityimprovedinnovationinsightmathematical modelmicrobialmicroorganismnovelremediationsuperfund sitevolatile organic compound
项目摘要
Project Summary
The project addresses a common challenge in the remediation of groundwater contaminated with
chlorinated volatile organic compounds (CVOCs) and 1,4-dioxane. CVOCs include chlorinated solvents, such
as trichloroethylene (TCE) and 1,1,1-trichloroethane (1,1,1-TCA), and their degradation products. Many CVOCs
and 1,4-dioxane are known or potential human carcinogens and on the Substance Priority List (SPL) for
Superfund sites. CVOCs bioremediation under anaerobic conditions (i.e. reductive dechlorination) is well
established. However, bioremediation of mixtures of CVOCs and 1,4-dioxane is not yet feasible due to at least
the following three obstacles: 1) low biodegradability of 1,4-dioxane at environmentally relevant concentrations,
2) requirement for aerobic conditions for 1,4-dioxane metabolism but anaerobic conditions for most CVOCs
metabolism, and 3) inhibition of 1,4-dioxane biodegradation by CVOCs. This project proposes the following
combined remediation approach to address these challenges: first, an innovative macrocyclic material approach
to selectively adsorb CVOCs and promote the growth of dechlorinating biofilm on the material surface to
anaerobically biodegrade CVOCs. After the CVOCs treatment, another type of innovative macrocyclic material
as an effective and selective sorbent for 1,4-dioxane sustains biofilms consisting of a highly efficient culture to
aerobically metabolize 1,4-dioxane. The macrocyclic molecules, which comprise repeating cyclic oligomers with
unique geometry and internal chemistry, form specific host-guest complexes with only selected guest molecules
(i.e., 1,4-dioxane or CVOCs). A highly efficient 1,4-dioxane-metabolizing culture (previously established) is much
more effective at low, environmentally relevant concentrations compared to all others reported in literature. To
understand the mechanisms of how the novel sorbents enhance bioremediation and to demonstrate the
feasibility of the proposed remediation approach, the researchers will conduct the following work: 1)
Computational study, synthesis, and characterization of novel macrocyclic materials. Two sorbents, one that
selectively and reversibly adsorbs CVOCs and another that selectively adsorbs 1,4-dioxane will be optimized for
use in the bioremediation studies. 2) Mechanistic study of the highly efficient 1,4-dioxane-metabolizing culture.
Key microorganisms responsible for the high affinity to 1,4-dioxane in the mixed culture will be isolated and
investigated for their degradation intermediates, pathways, and kinetics. 3) Elucidation of interactions among
contaminants, microbial cultures, and the novel sorbents. To achieve this, completely mixed flow experiments
will be performed, and they will be coupled with mathematical modeling that incorporates phenomena of both
sorption and biodegradation in biofilms. 4) Proof-of-concept column studies for bioremediation of CVOCs and
1,4-dioxane mixtures. Two long-term column studies will be performed: ex situ treatment of 1,4-dioxane and in
situ bioremediation of CVOCs and 1,4-dioxane mixture in series. Performance objectives will be Maximum
Contaminant Levels for CVOCs and the Health Advisory Level for 1,4-dioxane (0.35 µg/L).
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuexiao Shen其他文献
Yuexiao Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuexiao Shen', 18)}}的其他基金
Enhancing bioremediation of groundwater co-contaminated by chlorinated volatile organic compounds and 1,4-dioxane using novel macrocyclic materials
使用新型大环材料增强氯化挥发性有机化合物和 1,4-二恶烷共同污染的地下水的生物修复
- 批准号:
10641089 - 财政年份:2022
- 资助金额:
$ 28.86万 - 项目类别:
Enhancing bioremediation of groundwater co-contaminated by chlorinated volatile organic compounds and 1,4-dioxane using novel macrocyclic materials
使用新型大环材料增强氯化挥发性有机化合物和 1,4-二恶烷共同污染的地下水的生物修复
- 批准号:
10154239 - 财政年份:2021
- 资助金额:
$ 28.86万 - 项目类别:
Enhancing bioremediation of groundwater co-contaminated by chlorinated volatile organic compounds and 1,4-dioxane using novel macrocyclic materials
使用新型大环材料增强氯化挥发性有机化合物和 1,4-二恶烷共同污染的地下水的生物修复
- 批准号:
10514617 - 财政年份:2021
- 资助金额:
$ 28.86万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 28.86万 - 项目类别:
Studentship
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 28.86万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 28.86万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 28.86万 - 项目类别:
Standard Grant
Science for Boundary Lubrication - Essence of Low Friction Mechanism Based on Structure and Dynamics of Additive Adsorption Layer
边界润滑科学——基于添加剂吸附层结构和动力学的低摩擦机制本质
- 批准号:
23H05448 - 财政年份:2023
- 资助金额:
$ 28.86万 - 项目类别:
Grant-in-Aid for Scientific Research (S)