The Discovery of Novel Metabolic Pathways for the Biosynthesis and Degradation of Complex Carbohydrates within the Human Gut Microbiome
人类肠道微生物组内复杂碳水化合物生物合成和降解的新代谢途径的发现
基本信息
- 批准号:10323657
- 负责人:
- 金额:$ 60.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAnabolismBacteriaBiochemical PathwayBioinformaticsCampylobacter jejuniCarbohydratesComplexComputational BiologyDevelopmentEnzymesEvolutionGastroenteritisGenesHealthHumanInvestigationLibrariesLogicMaintenanceMetabolicMetabolic PathwayMetabolismMolecularMonosaccharidesOrganismPathway interactionsPhysiologyPolysaccharidesReactionResearch ProposalsSeriesTherapeutic InterventionTransferaseUncertaintyenzyme pathwaygut microbiomehost colonizationhuman pathogeninsightmetabolomicsnovelprotein structurescreeningsugartargeted treatment
项目摘要
The primary focus of this research proposal is the discovery and elucidation of novel
biochemical pathways for the biosynthesis and metabolism of complex and simple
carbohydrates in the human gut microbiome. The total number of genes contained within the
distinct bacterial species that inhabit the human gut exceeds the number of human genes by
more than two orders of magnitude. The metabolic diversity within these bacteria contributes
significantly to the maintenance of human health and physiology. Unfortunately, a significant
fraction of the enzymes and metabolic pathways contained within the bacterial species localized
in the human gut have an uncertain, unknown, or incorrect functional annotation. This
uncertainty demonstrates that a substantial fraction of the metabolic potential found within the
human gut microbiome remains to be properly characterized. The experimental approach for
the discovery and elucidation of novel biochemical pathways for the metabolism of complex
carbohydrates will employ the concerted and synergistic utilization of computational biology,
bioinformatics, three-dimensional protein structure determination, metabolomics, and physical
screening of focused compound libraries. This investigation will further be directed towards a
complete understanding of the assembly and biosynthesis of the diverse capsular
polysaccharides in the human pathogen Campylobacter jejuni, the leading cause of human
gastroenteritis world-wide. The capsular polysaccharides are important for the invasion and
colonization of the host organism and the monosaccharides that comprise the CPS in various
strains of C. jejuni are unusual and complex. This endeavor will focus on the elucidation of the
molecular pathways for the biosynthesis of the unusual array of monosaccharide building blocks
and the associated molecular logic for the directed assembly of unique polysaccharide sequences
by a series of sugar transferase enzymes. The determination of the substrate and reaction
diversity contained within these newly discovered enzyme-catalyzed reactions will provide
unique insights into the molecular mechanisms for the evolution and development of novel
enzymatic activities and will provide potential targets for therapeutic intervention.
这项研究计划的主要重点是发现和阐明新的
生物合成和代谢复杂和简单的生化途径
碳水化合物在人体肠道微生物组。基因组中包含的基因总数
栖息在人类肠道中的不同细菌种类超过了人类基因的数量,
超过两个数量级。这些细菌内的代谢多样性
对维持人体健康和生理机能有重要意义。不幸的是,
局部细菌种内所含的酶和代谢途径的比例
具有不确定的、未知的或不正确的功能注释。这
不确定性表明,代谢潜力的很大一部分,
人类肠道微生物组仍有待适当表征。实验方法为
发现和阐明复杂代谢的新生化途径
碳水化合物将采用计算生物学的协调和协同利用,
生物信息学、三维蛋白质结构测定、代谢组学和物理
筛选重点化合物文库。这项调查将进一步针对一个
完整了解不同荚膜的组装和生物合成
多糖在人类病原体空肠弯曲杆菌,人类的主要原因,
全球性的肠胃炎荚膜多糖对于侵袭和
宿主生物体的定殖和构成CPS的单糖在各种环境中的定殖,
梭菌菌株空肠是不寻常的和复杂的。这一奋进将集中在阐明
一系列不寻常的单糖结构单元生物合成的分子途径
以及用于独特多糖序列的定向组装的相关分子逻辑
一系列的糖转移酶。底物和反应的确定
这些新发现的酶催化反应中所包含的多样性将提供
独特的见解的分子机制的进化和发展的新的
酶活性,并将提供潜在的治疗干预的目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frank M. Raushel其他文献
Catalytic detoxification
催化解毒
- DOI:
10.1038/469310a - 发表时间:
2011-01-19 - 期刊:
- 影响因子:48.500
- 作者:
Frank M. Raushel - 通讯作者:
Frank M. Raushel
The use of phosphotriesterase in the synthesis of enantiomerically pure ProTide prodrugs
磷酸三酯酶在合成对映体纯的前药ProTide中的应用
- DOI:
10.1016/j.cbi.2025.111597 - 发表时间:
2025-09-05 - 期刊:
- 影响因子:5.400
- 作者:
Andrew N. Bigley;Frank M. Raushel - 通讯作者:
Frank M. Raushel
Frank M. Raushel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frank M. Raushel', 18)}}的其他基金
The Discovery of Novel Metabolic Pathways for the Biosynthesis and Degradation of Complex Carbohydrates within the Human Gut Microbiome
人类肠道微生物组内复杂碳水化合物生物合成和降解的新代谢途径的发现
- 批准号:
10557076 - 财政年份:2021
- 资助金额:
$ 60.6万 - 项目类别:
The Discovery of Novel Metabolic Pathways for the Biosynthesis and Degradation of Complex Carbohydrates within the Human Gut Microbiome
人类肠道微生物组内复杂碳水化合物生物合成和降解的新代谢途径的发现
- 批准号:
10084621 - 财政年份:2021
- 资助金额:
$ 60.6万 - 项目类别:
Novel Biochemical Pathways for the Metabolism of Carbohydrates in the Human gut Micriobiome
人类肠道微生物组中碳水化合物代谢的新生化途径
- 批准号:
10063528 - 财政年份:2017
- 资助金额:
$ 60.6万 - 项目类别:
Deciphering Enzyme Specificity: Amidohydrolase Superfamily
破译酶的特异性:酰胺水解酶超家族
- 批准号:
7743893 - 财政年份:2009
- 资助金额:
$ 60.6万 - 项目类别:
Enzymic Detoxification of Organophosphate Nerve Agents
有机磷神经毒剂的酶解毒
- 批准号:
6910693 - 财政年份:2003
- 资助金额:
$ 60.6万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 60.6万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 60.6万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 60.6万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 60.6万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 60.6万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 60.6万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 60.6万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 60.6万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 60.6万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 60.6万 - 项目类别:
Discovery Early Career Researcher Award