Novel Biochemical Pathways for the Metabolism of Carbohydrates in the Human gut Micriobiome

人类肠道微生物组中碳水化合物代谢的新生化途径

基本信息

  • 批准号:
    10063528
  • 负责人:
  • 金额:
    $ 30.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-12-15 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

The primary focus of this research proposal will be the identification, discovery, and elucidation of novel biochemical pathways for the metabolism of complex carbohydrates in the human gut microbiome. Currently, more than one thousand different bacterial species have been identified in the human intestinal tract and the total number of genes contained within these bacteria exceeds the number of human genes by more than two orders of magnitude. Moreover, it has been demonstrated that the composition of the human gut microbiome and the associated metabolic diversity contained within these bacteria contribute significantly to the maintenance of human health and physiology. Unfortunately, a significant fraction of the enzymes and corresponding metabolic pathways contained within the bacteria found in the human gut have an uncertain, unknown, or incorrect functional annotation. This uncertainty suggests that a substantial fraction of the metabolic potential contained within the human gut microbiome remains to be properly characterized. Our proposed experimental approach for the discovery and elucidation of novel metabolic pathways for the metabolism of complex carbohydrates will involve the concerted and synergistic utilization of bioinformatics, computational biology, three-dimensional protein structure determination, metabolomics and physical screening of focused compound libraries. The determination of the substrate and reaction diversity contained within the newly discovered enzyme-catalyzed reactions will provide unique insights into the molecular mechanisms for the evolution and development of novel enzymatic activities and will provide potential targets for therapeutic intervention.
该研究建议的主要重点是识别,发现和 阐明人类复杂碳水化合物代谢的新型生化途径 肠道微生物组。目前,已经确定了超过一千种不同的细菌物种 人类肠道和这些细菌中包含的基因总数超过 人类基因数量的数量超过两个数量级。而且,它已被证明 人类肠道微生物组的组成和相关的代谢多样性包含 在这些细菌中,对人类健康和生理学的维持产生了重大贡献。 不幸的是,大量的酶和相应的代谢途径包含 在人肠中发现的细菌中具有不确定,未知或不正确的功能 注解。这种不确定性表明,代谢潜力的很大一部分 在人类肠道微生物组中,仍有待正确表征。我们提出的实验 发现和阐明新型代谢途径的新陈代谢的方法 复杂的碳水化合物将涉及生物信息学的一致和协同利用, 计算生物学,三维蛋白质结构确定,代谢组学和 聚焦化合物库的物理筛选。底物和反应的确定 新发现的酶催化反应中包含的多样性将提供独特的 对新型酶促的进化和发展的分子机制的见解 活动并将为治疗干预提供潜在的目标。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Manganese-Induced Substrate Promiscuity in the Reaction Catalyzed by Phosphoglutamine Cytidylyltransferase from Campylobacter jejuni.
  • DOI:
    10.1021/acs.biochem.9b00189
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Zane W Taylor;F. Raushel
  • 通讯作者:
    Zane W Taylor;F. Raushel
Discovery of a Kojibiose Phosphorylase in Escherichia coli K-12.
  • DOI:
    10.1021/acs.biochem.8b00392
  • 发表时间:
    2018-05-15
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Mukherjee K;Narindoshvili T;Raushel FM
  • 通讯作者:
    Raushel FM
Product Specificity of C4-Reductases in the Biosynthesis of GDP-6-Deoxy-Heptoses during Capsular Polysaccharide Formation in Campylobacter jejuni.
空肠弯曲杆菌荚膜多糖形成过程中 C4 还原酶在 GDP-6-脱氧庚糖生物合成中的产物特异性。
  • DOI:
    10.1021/acs.biochem.2c00365
  • 发表时间:
    2022-10-04
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ghosh, Manas K.;Xiang, Dao Feng;Raushel, Frank M.
  • 通讯作者:
    Raushel, Frank M.
Functional Characterization of Two PLP-Dependent Enzymes Involved in Capsular Polysaccharide Biosynthesis from Campylobacter jejuni.
  • DOI:
    10.1021/acs.biochem.1c00439
  • 发表时间:
    2021-09-21
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Riegert AS;Narindoshvili T;Coricello A;Richards NGJ;Raushel FM
  • 通讯作者:
    Raushel FM
Cytidine Diphosphoramidate Kinase: An Enzyme Required for the Biosynthesis of the O-Methyl Phosphoramidate Modification in the Capsular Polysaccharides of Campylobacter jejuni.
  • DOI:
    10.1021/acs.biochem.8b00279
  • 发表时间:
    2018-04-17
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Taylor ZW;Raushel FM
  • 通讯作者:
    Raushel FM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frank M. Raushel其他文献

Frank M. Raushel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frank M. Raushel', 18)}}的其他基金

The Discovery of Novel Metabolic Pathways for the Biosynthesis and Degradation of Complex Carbohydrates within the Human Gut Microbiome
人类肠道微生物组内复杂碳水化合物生物合成和降解的新代谢途径的发现
  • 批准号:
    10323657
  • 财政年份:
    2021
  • 资助金额:
    $ 30.97万
  • 项目类别:
The Discovery of Novel Metabolic Pathways for the Biosynthesis and Degradation of Complex Carbohydrates within the Human Gut Microbiome
人类肠道微生物组内复杂碳水化合物生物合成和降解的新代谢途径的发现
  • 批准号:
    10557076
  • 财政年份:
    2021
  • 资助金额:
    $ 30.97万
  • 项目类别:
The Discovery of Novel Metabolic Pathways for the Biosynthesis and Degradation of Complex Carbohydrates within the Human Gut Microbiome
人类肠道微生物组内复杂碳水化合物生物合成和降解的新代谢途径的发现
  • 批准号:
    10084621
  • 财政年份:
    2021
  • 资助金额:
    $ 30.97万
  • 项目类别:
Enzymatic Hydrolysis of Organophosphate Esters
有机磷酸酯的酶水解
  • 批准号:
    9235651
  • 财政年份:
    2017
  • 资助金额:
    $ 30.97万
  • 项目类别:
The Enzymology of Phosphonate Metabolism
磷酸盐代谢的酶学
  • 批准号:
    8418217
  • 财政年份:
    2013
  • 资助金额:
    $ 30.97万
  • 项目类别:
The Enzymology of Phosphonate Metabolism
磷酸盐代谢的酶学
  • 批准号:
    8733182
  • 财政年份:
    2013
  • 资助金额:
    $ 30.97万
  • 项目类别:
The Enzymology of Phosphonate Metabolism
磷酸盐代谢的酶学
  • 批准号:
    9113961
  • 财政年份:
    2013
  • 资助金额:
    $ 30.97万
  • 项目类别:
Deciphering Enzyme Specificity: Amidohydrolase Superfamily
破译酶的特异性:酰胺水解酶超家族
  • 批准号:
    7743893
  • 财政年份:
    2009
  • 资助金额:
    $ 30.97万
  • 项目类别:
Amidohydrolase Superfamiily
酰胺水解酶超家族
  • 批准号:
    6854961
  • 财政年份:
    2004
  • 资助金额:
    $ 30.97万
  • 项目类别:
Enzymic Detoxification for Organophosphate Nerve Agents
有机磷神经毒剂的酶解毒
  • 批准号:
    8114985
  • 财政年份:
    2003
  • 资助金额:
    $ 30.97万
  • 项目类别:

相似国自然基金

基于祖先序列重构的D-氨基酸解氨酶的新酶设计及分子进化
  • 批准号:
    32271536
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
模板化共晶聚合合成高分子量序列聚氨基酸
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
模板化共晶聚合合成高分子量序列聚氨基酸
  • 批准号:
    22201105
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于祖先序列重构的D-氨基酸解氨酶的新酶设计及分子进化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
C-末端40个氨基酸插入序列促进细菌脂肪酸代谢调控因子FadR转录效率的机制研究
  • 批准号:
    82003257
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

ECOD: Large scale classification of predicted and experimental protein structures
ECOD:预测和实验蛋白质结构的大规模分类
  • 批准号:
    10659763
  • 财政年份:
    2023
  • 资助金额:
    $ 30.97万
  • 项目类别:
Discovery of structural RNAs involved in human health and disease
发现与人类健康和疾病有关的结构RNA
  • 批准号:
    10704745
  • 财政年份:
    2022
  • 资助金额:
    $ 30.97万
  • 项目类别:
Evasion of host immunity by the M protein
M蛋白逃避宿主免疫
  • 批准号:
    10798688
  • 财政年份:
    2020
  • 资助金额:
    $ 30.97万
  • 项目类别:
HMGB1-mediated host response to chronic bacterial infection
HMGB1介导的宿主对慢性细菌感染的反应
  • 批准号:
    10671706
  • 财政年份:
    2020
  • 资助金额:
    $ 30.97万
  • 项目类别:
HMGB1-mediated host response to chronic bacterial infection
HMGB1介导的宿主对慢性细菌感染的反应
  • 批准号:
    10267696
  • 财政年份:
    2020
  • 资助金额:
    $ 30.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了