Plasmonic nanoparticle-mediated immunotherapy to treat metastatic cancer

等离子纳米粒子介导的免疫疗法治疗转移性癌症

基本信息

  • 批准号:
    10326341
  • 负责人:
  • 金额:
    $ 52.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Bladder cancer (BC) is the 4th most common cancer in men and the 11th most common in women. BC  has  the  highest  lifetime  per-­patient  treatment  cost  of  all  cancers,  mainly  because  of  its  high  recurrence  rate.  Also,  regular  invasive  cystoscopy  and  the  subsequent  surgical  treatment  of  recurrences  impair  patient  quality  of  life  and  cause  significant  morbidity.  Therefore,  there  is  a  clear  clinical  need  for  novel  technologies  to  effectively  treat  BC,  ultimately  reducing  tumor  recurrences,  treatment  costs,  number  of  radical  cystectomies,  and  mortality.  A  promising  therapeutic  platform  for  cancer  is  offered  by  gold  nanoparticles  (GNP).  Taking  advantage  of  gold’s  high  biocompatibility,  GNP  can  be  injected  intravenously  and  accumulate  preferentially  in  cancer  cells  due  to  the  enhanced  permeability  and  retention  effect.  Among  GNP  platforms,  gold  nanostars  (GNS)  have  great  therapeutic  potential  due  to  the  unique  star-­shaped  geometry  that  dramatically  enhances  light absorption and effective conversion into heat due to the plasmonic effect. This photothermal process can  be exploited to specifically ablate tumors and, importantly, to amplify the anti-­tumor immune response following  the highly immunogenic thermal death of cancer cells. Relatedly, many cancers exploit immune checkpoints –  such  as  the  interaction  between  programmed  cell  death  1  (PD-­1)  and  its  ligand  (PD-­L1)  –  to  evade  the  anti-­ cancer immune response. Recent immunotherapies disabling this immune resistance mechanism have shown  encouraging clinical results, are FDA approved in BC, but do not offer a permanent cure for most patients.  We  thus  propose  to  develop  the  GNS  technology  for  use  in  SYnergistic  iMmuno  PHOtothermal  NanotherapY  (SYMPHONY),  a  novel  therapy  that  integrates  nanotechnology,  biophotonics,  and  immunotherapy.  The  central  hypothesis  of  this  proposal  is  that  combining  GNS-­mediated  photothermal  nanotherapy  with  PD-­1/PD-­L1  immune  checkpoint  blockade  will  result  in  dramatic  therapeutic  synergism  to  treat  cancer  metastasis.  The  rationale  for  this  hypothesis  is  that  photothermal  therapy  not  only  reduces  tumor  burden  by  direct  heat-­based  ablation,  but  also  causes  intense  immune  responses  that  can  be  amplified  with  PD-­1/PD-­L1 immune checkpoint blockade. The specific aims are: (1) Fabricate and modulate optical properties  of  next-­generation  plasmonics  GNS  to  maximize  photothermal  therapy  of  deep  tumors;;  (2)  Coat  and  functionalize  GNS  to  safely  improve  in  vivo  BC  targeting;;  and  (3)  Evaluate  effectiveness  of  SYMPHONY  therapy  for  treating  BC  in  murine  models.  The  results  of  our  research  proposal  intends  to  prove  that  nanoparticle  therapy  and  immunotherapy  can  be  synergistically  combined  to  produce  an  antitumor  systemic  response far superior to either single therapy alone. We will also prove that SYMPHONY triggers an extremely  potent  systemic  response  that  cures  both  primary  and  distant  lesions,  producing  a  ‘vaccine’  effect  to  prevent  future  BC  recurrences.  The  proposed  work  will  set  the  stage  for  SYMPHONY’s  rapid  future  clinical  translation  to improve life quality and reduce mortality of BC patients.
膀胱癌 (BC) 是男性中第 4 位最常见的癌症,女性中第 11 位最常见的癌症。 公元前  在所有癌症中,每位患者的生命周期治疗成本最高,主要是因为其复发率高。  此外,定期的侵入性膀胱镜检查和随后的复发手术治疗也会损害患者的质量  生命并导致显着的发病率。  因此,临床上显然需要新技术  有效治疗乳腺癌,最终减少肿瘤复发、治疗费用、根治性膀胱切除术的数量,  和死亡率。  金纳米粒子 (GNP) 提供了一个有前景的癌症治疗平台。  服用  利用金的高生物相容性,GNP可以静脉注射并优先在体内蓄积  由于增强的渗透性和滞留作用而对癌细胞产生影响。  在 GNP 平台中,金纳米星  (GNS) 具有巨大的治疗潜力,因为其独特的星形几何形状可显着增强  由于等离子体效应,光吸收并有效转化为热量。 这种光热过程可以  可用于专门消融肿瘤,并且重要的是,可增强随后的抗肿瘤免疫反应  癌细胞的高度免疫原性热死亡。 与此相关的是,许多癌症都会利用免疫检查点——  例如程序性细胞死亡 1 (PD-1) 与其配体 (PD-L1) 之间的相互作用 – 以逃避抗- 癌症免疫反应。 最近的免疫疗法已表明可以禁用这种免疫抵抗机制  令人鼓舞的临床结果,已在 BC 省获得 FDA 批准,但不能为大多数患者提供永久治愈。  因此,我们建议开发 GNS 技术用于协同免疫光热  NanotherapY(SYMPHONY)是一种集成了纳米技术、生物光子学和  免疫疗法。  该提案的中心假设是结合 GNS 介导的光热  纳米疗法与 PD-1/PD-L1 免疫检查点阻断将产生显着的治疗协同作用  治疗癌症转移。  该假设的基本原理是光热疗法不仅可以减少肿瘤  直接基于热的消融造成的负担,但也会引起强烈的免疫反应,这种反应可以通过以下方法放大:  PD-1/PD-L1 免疫检查点阻断。 具体目标是:(1) 制造和调制光学特性  下一代等离子体 GNS,以最大限度地提高深部肿瘤的光热疗法;;(2) 涂层和  使 GNS 功能化,以安全地改善体内 BC 靶向;;以及 (3) 评估 SYMPHONY 的有效性  在小鼠模型中治疗 BC 的疗法。  我们的研究计划的结果旨在证明  纳米颗粒疗法和免疫疗法可以协同组合以产生全身性抗肿瘤  反应远远优于单独的单一疗法。 我们还将证明 SYMPHONY 会引发极端的后果  有效的全身反应,可治愈原发性病变和远处病变,产生“疫苗”效应以预防  BC 未来的复发。  拟议的工作将为 SYMPHONY 未来快速临床转化奠定基础  提高 BC 患者的生活质量并降低死亡率。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Accurate in vivo tumor detection using plasmonic-enhanced shifted-excitation Raman difference spectroscopy (SERDS).
  • DOI:
    10.7150/thno.53101
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    12.4
  • 作者:
    Strobbia P;Cupil-Garcia V;Crawford BM;Fales AM;Pfefer TJ;Liu Y;Maiwald M;Sumpf B;Vo-Dinh T
  • 通讯作者:
    Vo-Dinh T
Intravital optical imaging for immune cell tracking after photoimmunotherapy with plasmonic gold nanostars.
  • DOI:
    10.1088/1361-6528/ac893a
  • 发表时间:
    2022-08-31
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
  • 通讯作者:
Nanoplasmonics Enabling Cancer Diagnostics and Therapy.
  • DOI:
    10.3390/cancers14235737
  • 发表时间:
    2022-11-22
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tuan Vo-Dinh其他文献

Tuan Vo-Dinh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tuan Vo-Dinh', 18)}}的其他基金

Integrated Acoustofluidic Plasmonic Molecular Diagnostic System for Detecting MicroRNA Biomarkers
用于检测 MicroRNA 生物标志物的集成声流控等离子体分子诊断系统
  • 批准号:
    10580345
  • 财政年份:
    2020
  • 资助金额:
    $ 52.84万
  • 项目类别:
Integrated Acoustofluidic Plasmonic Molecular Diagnostic System for Detecting MicroRNA Biomarkers
用于检测 MicroRNA 生物标志物的集成声流控等离子体分子诊断系统
  • 批准号:
    10542811
  • 财政年份:
    2020
  • 资助金额:
    $ 52.84万
  • 项目类别:
Integrated Acoustofluidic Plasmonic Molecular Diagnostic System for Detecting MicroRNA Biomarkers
用于检测 MicroRNA 生物标志物的集成声流控等离子体分子诊断系统
  • 批准号:
    10322659
  • 财政年份:
    2020
  • 资助金额:
    $ 52.84万
  • 项目类别:
Nanoplasmonics-based molecular analysis tool for molecular biomarkers of cancer
基于纳米等离子体的癌症分子生物标志物分子分析工具
  • 批准号:
    9321908
  • 财政年份:
    2015
  • 资助金额:
    $ 52.84万
  • 项目类别:
Nanoplasmonics-based molecular analysis tool for molecular biomarkers of cancer
基于纳米等离子体的癌症分子生物标志物分子分析工具
  • 批准号:
    9140063
  • 财政年份:
    2015
  • 资助金额:
    $ 52.84万
  • 项目类别:
Nonobiosensors for Probing Chemical Exposure and Metabolism Pathways of Individua
用于探测个体化学暴露和代谢途径的非生物传感器
  • 批准号:
    7628387
  • 财政年份:
    2007
  • 资助金额:
    $ 52.84万
  • 项目类别:
Nonobiosensors for Probing Chemical Exposure and Metabolism Pathways of Individua
用于探测个体化学暴露和代谢途径的非生物传感器
  • 批准号:
    7470578
  • 财政年份:
    2007
  • 资助金额:
    $ 52.84万
  • 项目类别:
Nonobiosensors for Probing Chemical Exposure and Metabolism Pathways of Individua
用于探测个体化学暴露和代谢途径的非生物传感器
  • 批准号:
    7279531
  • 财政年份:
    2007
  • 资助金额:
    $ 52.84万
  • 项目类别:
Ultra-High-Throughput Screening Based on Surface Enhance
基于表面增强的超高通量筛选
  • 批准号:
    7240228
  • 财政年份:
    2006
  • 资助金额:
    $ 52.84万
  • 项目类别:
Ultra-High-Throughput Screening (uHTS) Based on Surface*
基于表面的超高通量筛选 (uHTS)*
  • 批准号:
    7318325
  • 财政年份:
    2006
  • 资助金额:
    $ 52.84万
  • 项目类别:

相似海外基金

Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
  • 批准号:
    2244994
  • 财政年份:
    2023
  • 资助金额:
    $ 52.84万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了