Artificial intelligence Optical Coherence Tomography Guided Deep Anterior Lamellar Keratoplasty (AUTO-DALK)
人工智能光学相干断层扫描引导深前板层角膜移植术(AUTO-DALK)
基本信息
- 批准号:10328500
- 负责人:
- 金额:$ 39.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdrenal Cortex HormonesAnimal ModelAnteriorArtificial IntelligenceBlindnessBlunt TraumaBurr hole procedureCadaverClinicalComplicationConsumptionCorneaCorneal DiseasesCorneal OpacityCorneal dystrophyDataDescemet&aposs membraneDevicesDimensionsDisciplineDistalDropsEarly DiagnosisEndophthalmitisEndothelial CellsEndotheliumEngineeringEnsureEpithelialExcisionExpert SystemsEyeEye SurgeonFailureFiber OpticsFinancial compensationGeometryGlaucomaGoalsGraft SurvivalHemorrhageHumanImageImmuneIncidenceInfectionInjectionsIntelligenceIntraoperative ComplicationsIrisKeratoconusKeratoplastyLaboratoriesLamellar KeratoplastyLeadManualsMechanicsMedicalMicroscopeModelingMotionMovementNeedlesOcular HypertensionOperative Surgical ProceduresOphthalmologyOptical Coherence TomographyOpticsOryctolagus cuniculusOutcomePathological DilatationPatientsPenetrating KeratoplastyPerforationPerformancePostoperative ComplicationsPostoperative PeriodProceduresPtosisRecoveryRepeat SurgeryReportingResearch PersonnelRiskRoboticsRuptureSafetyScientistSecondary toStructureSurgeonSurgical complicationSystemSystems DevelopmentTechniquesTechnologyTestingThickTimeTissuesTopical CorticosteroidsTranslatingTransplantation SurgeryTraumaValidationVisualVisual AcuityVisualizationWorkbaseconvolutional neural networkcorneal scarcurative treatmentsdeep learningdesignexperiencegraft failurehigh riskiatrogenic injuryimprovedin vivoinstrumentinterestnovelphantom modelphotonicspreservationprototypesensorskillssurgery outcometool
项目摘要
PROJECT SUMMARY
Contemporary ocular surgeries are performed by skilled surgeons through operating microscopes,
utilizing freehand techniques and manually operated precision micro-instruments, where the outcomes are often
limited by the surgeon's skill levels and experiences. To overcome these human factors, we have assembled
an interdisciplinary team including a clinician-scientist and eye surgeon, an optical device scientist and medical
robotic engineers to translate existing and developing technologies in our laboratories into precision, “deep-
learning” artificial intelligence (AI) guided robotic ocular surgical devices for precise automated Deep Anterior
Lamellar Keratoplasty (AUTO-DALK).
DALK is a highly attractive treatment of corneal disease with normally functioning endothelium. However,
the procedure is unusually challenging from a technical perspective and time-consuming, limiting its acceptance
among corneal surgeons. The most challenging aspect of the procedure is related to the delamination of stroma
from Descemet's membrane (DM). A procedure, commonly called “Big Bubble” is used to separate stroma from
DM using deep intrastromal pneumatic injection. However, even experienced surgeons have difficulty precisely
placing the injection. The most common complication of DALK is the excessive depth of the needle insertion
resulting in Descemet's membrane perforation requiring conversion to full-thickness penetrating keratoplasty
with its much longer recovery period and a higher risk of graft failure from rejection. The reported rates of
Descemet's membrane perforation for beginner and experienced surgeons are 31.8% and 11.7% respectively.
In addition, interface haze between the donor and recipient cornea is a common problem caused by the
insufficient depth of needle insertion and failure to remove the host stromal tissue, which results in loss of
postoperative visual acuity. These problems relate directly to the inability of the current surgical practice to
precisely assess the depth of the tooltips inside the cornea layer in real-time.
Here we will build upon our previous and ongoing work in robust fiber optic common-path optical
coherence tomography (CP-OCT) and AI-guide system based on convolutional neural network (CNN) robotic
microsurgical tools that enable clinicians to precisely guide surgical tools at micron scale. The proposed AUTO-
DALK surgical tool system is capable of one-dimensional real-time depth tracking, motion compensation, and
detection of early instrument contact with tissue, which enables clinicians to perform DALK precisely and safely.
The tool will be built on a handheld platform that will consist of CP-OCT probe, trephine and microinjector that
allows precise and safe removal of the anterior section of cornea down to DM
We hypothesize that AI-OCT providing intelligent visualization and depth controlled optimal cornea
cutting and tissue tracking will perform the task of DALK with better accuracy and efficiency over the manually
performed trephine cutting and “Big Bubble” pneumodissection.
项目摘要
现代眼科手术是由熟练的外科医生通过手术显微镜进行的,
利用徒手技术和手动操作的精密显微仪器,其结果往往是
受限于外科医生的技术水平和经验。为了克服这些人为因素,我们聚集了
一个跨学科的团队,包括临床科学家和眼科医生,光学设备科学家和医疗
机器人工程师将我们实验室中现有的和正在开发的技术转化为精确的,“深度,
学习”人工智能(AI)引导的机器人眼科手术设备,用于精确的自动化深前
板层角膜移植术(AUTO-DALK)。
DALK是内皮功能正常的角膜疾病的一种非常有吸引力的治疗方法。然而,在这方面,
从技术角度来看,这一程序非常具有挑战性,而且耗时,限制了其接受程度
在角膜外科医生中。该手术最具挑战性的方面与基质分层有关
Descemet’s membrane(DM)通常称为“大气泡”的程序用于将基质与
DM采用深层基质内气压注射。然而,即使是经验丰富的外科医生也很难准确地
进行注射。DALK最常见的并发症是针插入深度过大
导致后弹力层穿孔,需要转换为全层穿透性角膜移植术
其恢复期长得多,并且由于排斥而导致移植失败的风险更高。报告的死亡率
后弹力膜穿孔率初学者为31.8%,有经验者为11.7%。
此外,供体和受体角膜之间的界面混浊是由角膜移植引起的常见问题。
针插入深度不足和未能去除宿主间质组织,这导致
术后视力这些问题直接关系到目前的外科实践不能
实时精确评估角膜层内工具提示的深度。
在这里,我们将建立在我们以前和正在进行的工作,在强大的光纤共路光学
基于卷积神经网络(CNN)机器人的相干断层扫描(CP-OCT)和AI引导系统
显微手术工具,使临床医生能够在微米级精确引导手术工具。拟议的预算-
DALK手术工具系统能够进行一维实时深度跟踪、运动补偿,
检测仪器与组织的早期接触,使临床医生能够精确、安全地执行DALK。
该工具将建立在一个手持平台上,该平台将由CP-OCT探头、环钻和显微注射器组成,
允许精确和安全地切除角膜前部,直至DM
我们假设AI-OCT提供智能可视化和深度控制的最佳角膜
切割和组织跟踪将以比手动更好的准确性和效率执行DALK任务,
进行环钻切割和“大气泡”肺剥离。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jin U Kang其他文献
Field rede(cid:12)nitions and K(cid:127)ahler potential in string theory at 1-loop
1 环弦理论中的场重定义 (cid:12) 概念和 K(cid:127)ahler 势
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Michael Haack;Jin U Kang - 通讯作者:
Jin U Kang
Field redefinitions and Kähler potential in string theory at 1-loop
1 环弦理论中的场重新定义和卡勒势
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:5.4
- 作者:
Michael Haack;Jin U Kang - 通讯作者:
Jin U Kang
Jin U Kang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jin U Kang', 18)}}的其他基金
Artificial intelligence Optical Coherence Tomography Guided Deep Anterior Lamellar Keratoplasty (AUTO-DALK)
人工智能光学相干断层扫描引导深前板层角膜移植术(AUTO-DALK)
- 批准号:
10556431 - 财政年份:2021
- 资助金额:
$ 39.77万 - 项目类别:
Next Generation of Surgical Imaging and Robotics for Supervised Autonomous Soft Tissue Surgery
用于监督自主软组织手术的下一代手术成像和机器人技术
- 批准号:
9477321 - 财政年份:2016
- 资助金额:
$ 39.77万 - 项目类别:
Next Generation of Surgical Imaging and Robotics for Supervised Autonomous Soft Tissue Surgery
用于监督自主软组织手术的下一代手术成像和机器人技术
- 批准号:
9234534 - 财政年份:2016
- 资助金额:
$ 39.77万 - 项目类别:
Common-Path OCT for Real Time Imaging in Minimally Invasive Neurosurgery
用于微创神经外科实时成像的共路 OCT
- 批准号:
7895098 - 财政年份:2009
- 资助金额:
$ 39.77万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Research Grant