Relating Molecular Subgroups of Endometriosis-Associated Ovarian Cancers to Survival and Risk
子宫内膜异位症相关卵巢癌的分子亚群与生存和风险的关系
基本信息
- 批准号:10328566
- 负责人:
- 金额:$ 99.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-13 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AgeAlgorithmsBiologicalBiological ProcessBiologyBody mass indexCancer BiologyClear CellClinicalCollaborationsCommunitiesComplementDataDetectionDevelopmentDiabetes MellitusEpidemiologyEtiologyFatal OutcomeFoundationsFutureGene ExpressionGenetic Predisposition to DiseaseGenomicsHistologyHyperlipidemiaIncidenceInvestigationKnowledgeLeadMalignant Female Reproductive System NeoplasmMalignant NeoplasmsMalignant neoplasm of ovaryMethodsModelingMolecularMolecular ProfilingMutationOutcomePathologicPathway AnalysisPatientsPatternPlatinumPrecision therapeuticsPrevention strategyProgression-Free SurvivalsRecording of previous eventsReproducibilityResearchResearch PersonnelResistanceResourcesRiskRisk FactorsSample SizeSamplingSerousSmokingSomatic MutationSpecificityStructureSubgroupSurvival RateSusceptibility GeneSymptomsTestingTherapeuticTrainingTumor SubtypeUpdateWomanbasechemotherapydiagnostic criteriaendometriosisepidemiology studygenomic datagenomic profileshazardhistological studiesinnovationinsightmodifiable riskmolecular subtypesnew therapeutic targetnovelpatient subsetspersonalized approachprognosticprotein expressionresponsescreeningsecondary analysistargeted treatmenttaxanetreatment strategytumor
项目摘要
PROJECT SUMMARY/ABSTRACT
Ovarian cancer (OC) is the eleventh most common cancer and fifth deadliest among U.S. women. The low
incidence, high fatality and molecularly broad range of tumor histotypes make OC challenging to study and to
treat. Consequently, survival rates have scarcely changed over the past 35 years, largely because precision
therapy lags behind most other cancers. Endometrioid (ENOC) and clear cell (CCOC) account for ~25% of all
invasive OC. They are a heterogeneous and understudied group of tumors that are closely associated with
endometriosis, but show few similarities to the more common high grade serous OC. ENOC or CCOC have
variable or poor response to standard platinum-based chemotherapy. CCOC, in particular, is more likely to be
platinum resistant at early stage and resistant to second line chemotherapy at advanced stage, resulting in
worse survival than HGSOC. We hypothesize that molecular tumor subtypes exist for ENOC and CCOC that
reflect differences in biological processes and risk factors and that might inform new treatment strategies. Our
preliminary results using genomics analyses of 185 ENOC and 115 CCOC supports this hypothesis by
showing that associations with survival and risk factors such as smoking and body mass index differ according
to the tumor’s molecular profile, with some subgroups showing rapidly fatal outcome. In the current proposal,
we intend to delve deeper into the genomic profile of ~1,100 ENOC and CCOC tumors to identify key
molecular features of the tumor subtypes. Our approach uses a consortium effort that combines existing data
from well-conducted epidemiologic studies of risk factors with corresponding clinical information among
investigators with a strong history of collaboration. We will first characterize molecular subtypes, separately for
ENOC and CCOC, by integrating sequencing and array data from gene expression, mutations and methylated
regions from a training set (483 ENOC, 292 CCOC) using statistical clustering. Next, we will assess replication
of the molecular subtypes in an independent test set (207 ENOC, 125 CCOC). To assess subtype-specific
associations in the total sample (689 ENOC, 417 CCOC), we will relate molecular subtypes of ENOC and
CCOC separately to risk factors and to survival. Impact: Less common OC such as ENOC or CCOC are often
overshadowed by investigations of more common cancers, yet our data show that ENOC and CCOC can also
be rapidly fatal in certain patient subsets or show more favorable outcome in others, directly impacting patients’
lives. Finding patterns with other cancers by using integrated analysis of ENOC and CCOC subtypes has high
potential to inform new avenues for targeted therapy and to enhance understanding of ENOC and CCOC
cancer biology. Future replication of our findings using an independent 1,400 ENOC/CCOC tumors from our
unique consortia resources can lead to needed gains in biological, epidemiologic and therapeutic insights for
these patients.
项目摘要/摘要
卵巢癌(OC)在美国女性中是第11位最常见的癌症,也是第5位最致命的癌症。低谷
发病率、高致死率和分子范围广泛的肿瘤组织类型使OC的研究和治疗具有挑战性
请客。因此,在过去的35年里,存活率几乎没有变化,这主要是因为精确度
治疗落后于大多数其他癌症。子宫内膜样变(ENOC)和透明细胞(CCOC)约占总数的25%
侵袭性OC。它们是一组异质的、未被充分研究的肿瘤,与
子宫内膜异位症,但与更常见的高级别浆液性卵巢癌几乎没有相似之处。ENOC或CCOC拥有
对以铂为基础的标准化疗的反应可变或较差。尤其是CCOC,更有可能是
早期对铂类耐药,晚期对二线化疗耐药,导致
存活率比HGSOC还差。我们假设ENOC和CCOC存在分子肿瘤亚型
反映生物过程和风险因素的差异,这可能为新的治疗战略提供参考。我们的
185个ENOC和115个CCOC的基因组分析的初步结果支持这一假说
表明与生存和风险因素如吸烟和体重指数的关系不同
与肿瘤的分子图谱相一致,一些亚群显示出迅速致命的结果。在目前的提案中,
我们打算更深入地研究~1,100例ENOC和CCOC肿瘤的基因组图谱,以确定关键
肿瘤亚型的分子特征。我们的方法使用将现有数据结合在一起的联合体工作
来自对危险因素的良好流行病学研究,以及相应的临床信息
调查人员有很强的合作历史。我们将首先描述分子亚型的特征,分别为
ENOC和CCOC,通过整合来自基因表达、突变和甲基化的测序和阵列数据
使用统计聚类从训练集(483个ENOC,292个CCOC)中提取区域。接下来,我们将评估复制
在独立测试集中的分子亚型(207个ENOC,125个CCOC)。评估子类型特定的
在总样本(689个ENOC,417个CCOC)中,我们将联系ENOC的分子亚型和
CCOC分别对危险因素和生存有影响。影响:ENOC或CCOC等不太常见的OC通常
尽管对更常见癌症的研究相形见绌,但我们的数据显示,ENOC和CCOC也可以
在某些患者亚群中迅速死亡或在其他患者亚群中表现出更有利的结果,直接影响患者的
活着。利用ENOC和CCOC亚型的综合分析寻找与其他癌症的模式具有很高的实用价值
有可能为靶向治疗提供新的途径,并增进对ENOC和CCOC的了解
癌症生物学。未来使用来自我们的1,400个独立的ENOC/CCOC肿瘤来复制我们的发现
独特的财团资源可以在生物学、流行病学和治疗方面带来必要的收获
这些病人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELLEN L. GOODE其他文献
ELLEN L. GOODE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELLEN L. GOODE', 18)}}的其他基金
Relating Molecular Subgroups of Endometriosis-Associated Ovarian Cancers to Survival and Risk
子宫内膜异位症相关卵巢癌的分子亚群与生存和风险的关系
- 批准号:
10117829 - 财政年份:2021
- 资助金额:
$ 99.83万 - 项目类别:
Relating Molecular Subgroups of Endometriosis-Associated Ovarian Cancers to Survival and Risk
子宫内膜异位症相关卵巢癌的分子亚群与生存和风险的关系
- 批准号:
10534755 - 财政年份:2021
- 资助金额:
$ 99.83万 - 项目类别:
Epidemiology and Genomics of Ovarian Clear Cell Carcinoma
卵巢透明细胞癌的流行病学和基因组学
- 批准号:
9597497 - 财政年份:2018
- 资助金额:
$ 99.83万 - 项目类别:
Epidemiology and Genomics of Ovarian Clear Cell Carcinoma
卵巢透明细胞癌的流行病学和基因组学
- 批准号:
9753165 - 财政年份:2018
- 资助金额:
$ 99.83万 - 项目类别:
Mechanisms of Immune Suppression in Ovarian Cancer
卵巢癌的免疫抑制机制
- 批准号:
7727446 - 财政年份:2009
- 资助金额:
$ 99.83万 - 项目类别:
Genetic Variation in the NF-kappaB Pathway and Ovarian Cancer Etiology
NF-kappaB 通路的遗传变异与卵巢癌病因学
- 批准号:
8291440 - 财政年份:2007
- 资助金额:
$ 99.83万 - 项目类别:
Genetic Variation in the NF-kappaB Pathway and Ovarian Cancer Etiology
NF-kappaB 通路的遗传变异与卵巢癌病因学
- 批准号:
8137048 - 财政年份:2007
- 资助金额:
$ 99.83万 - 项目类别:
相似海外基金
CAREER: Transferring biological networks emergent principles to drone swarm collaborative algorithms
职业:将生物网络新兴原理转移到无人机群协作算法
- 批准号:
2339373 - 财政年份:2024
- 资助金额:
$ 99.83万 - 项目类别:
Continuing Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 99.83万 - 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
- 批准号:
EP/Y037375/1 - 财政年份:2023
- 资助金额:
$ 99.83万 - 项目类别:
Research Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2021
- 资助金额:
$ 99.83万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2019
- 资助金额:
$ 99.83万 - 项目类别:
Discovery Grants Program - Individual
Building flexible biological particle detection algorithms for emerging real-time instrumentation
为新兴实时仪器构建灵活的生物颗粒检测算法
- 批准号:
2278799 - 财政年份:2019
- 资助金额:
$ 99.83万 - 项目类别:
Studentship
CAREER: Microscopy Image Analysis to Aid Biological Discovery: Optics, Algorithms, and Community
职业:显微镜图像分析有助于生物发现:光学、算法和社区
- 批准号:
2019967 - 财政年份:2019
- 资助金额:
$ 99.83万 - 项目类别:
Standard Grant
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2018
- 资助金额:
$ 99.83万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2017
- 资助金额:
$ 99.83万 - 项目类别:
Discovery Grants Program - Individual
Analysis of words: algorithms for biological sequences, music and texts
单词分析:生物序列、音乐和文本的算法
- 批准号:
RGPIN-2016-03661 - 财政年份:2016
- 资助金额:
$ 99.83万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




