Project-002
项目-002
基本信息
- 批准号:10330127
- 负责人:
- 金额:$ 10.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-25 至 2024-02-29
- 项目状态:已结题
- 来源:
- 关键词:Acidic Amino AcidsAcidic RegionAntibioticsAntigen TargetingAntigensBacteriaBindingBinding ProteinsCationsCervicalChargeDetergentsDevelopmentDimensionsDiseaseDisease modelEngineeringEpitopesEtiologyExcisionFemale genitaliaFormulationFundingGoalsGonorrheaGrantHumanHybridsImmune responseImmunoassayImmunologicsIndividualInfectionInfection preventionIronIron-Binding ProteinsLactoferrinLibrariesLipoproteinsLobeMediatingMembraneMembrane Transport ProteinsModelingMutationNeisseria gonorrhoeaeNutrientPathway interactionsPelvic Inflammatory DiseasePeptidesProductionPropertyProteinsRecombinantsResistanceRoleSexually Transmitted DiseasesSolubilityStructureSurfaceSystemTFRC geneTestingTransferrinTransferrin-Binding Protein ATransferrin-Binding Protein BTransgenic MiceUnited States National Institutes of HealthUpper respiratory tractUrethraUterusVaccinatedVaccine DesignVaccinesVariantantigen testbasecross reactivitydesignhuman maleinsightlactoferrin receptorsmalemouse modelmutantnovelpathogenperiplasmprogramsprotein Breceptorreproductive tractresponsescaffoldscale upurogenital tractvaccine developmentvaccine evaluation
项目摘要
This goal of this project is to develop a broadly cross-protective vaccine against Neisseria gonorrhoeae, the
bacteria responsible for the common sexually-transmitted disease, gonorrhea. The emergence of strains of N.
gonorrhoeae that are resistant to most antibiotics has raised the specter of untreatable gonorrhea, adding
urgency for the development and implementation of effective vaccines for prevention of this infection and its
sequelae. N. gonorrhoeae is human-specific pathogen that exclusively resides in genitourinary tract, or less
frequently, in the upper respiratory tract, of its human host. Our approach is to target the surface components
responsible for mediating iron acquisition from the host iron binding proteins, transferrin (Tf) and lactoferrin (Lf),
since these two systems have been shown to be essential for survival of the bacteria and their ability to cause
infection in a human male urethral infection model. Since the bacteria cannot survive without these receptor
proteins, they will not be able to escape vaccine coverage by loss of the receptors, thus could be eliminated
from vaccinated individuals if we are successful in developing a fully cross-protective vaccine against all
variants of the receptor proteins.
This project is focused on using structure-guided antigen design to generate engineered antigens targeting
both the surface lipoprotein, lactoferrin binding protein B (LbpB), and the integral outer membrane transport
protein, lactoferrin binding protein A (LbpA), that will collectively induce a broadly cross-protective immune
response against all known variants of these proteins. Our novel integrated vaccine design and evaluation
pipeline approach will use libraries of antigenic variants in immunoassays and strain libraries in colonization
and infection models to evaluate the cross-reactive and cross protective properties of the immune response to
guide the selection of combinations of antigens. We will determine the global sequence diversity of the target
antigens (LbpB and LbpA) and then develop non-binding mutants of representative variant LbpBs that are
predicted to collectively provide a broad cross-protective immune response against all LbpB variants. We will
evaluate the immunological properties of the negatively charged regions in the C-lobe of LbpB, determine the
impact of their removal and determine the optimum combination of LbpA epitopes that can be displayed on the
LbpB C-lobe that induces a broadly cross-protective response against LbpA.
The final step will be to integrate the results from an established NIH grant focused on developing antigens
targeting transferrin binding protein B and A (TbpB and TbpA) and determine the optimum combination of
engineered TbpB and LbpB antigens displaying epitopes from TbpA and LbpA to induce a broadly cross-protective
immune response against all four antigens. Studies in our normal and transgenic mice indicate that
antigens targeting TbpB or TbpA can reduce colonization, thus the prospects of developing a vaccine that will
eliminate bacteria expressing any of the four target antigens are promising.
这个项目的目标是开发一种广泛的交叉保护性疫苗来对抗淋病奈瑟菌,
导致常见的性传播疾病淋病的细菌。出现了N。
对大多数抗生素具有抗药性的淋病增加了无法治疗的淋病的幽灵,补充说
迫切需要开发和实施有效的疫苗来预防这种感染和
后遗症。淋病奈瑟氏菌是人类特有的病原体,只存在于生殖道或更少的地方。
通常,在其人类宿主的上呼吸道。我们的方法是瞄准表面组件
负责调节宿主铁结合蛋白转铁蛋白(Tf)和乳铁蛋白(Lf)的铁获取,
因为这两个系统已经被证明对细菌的生存和它们引起
人类男性尿路感染模型中的感染。因为细菌没有这些受体就不能生存
蛋白质,它们将不能通过失去受体而逃脱疫苗覆盖,因此可以被消除。
如果我们成功地开发出一种完全交叉保护的疫苗来对抗所有
受体蛋白的变种。
该项目的重点是使用结构导向的抗原设计来产生靶向的工程化抗原。
表面脂蛋白、乳铁蛋白结合蛋白B(LbpB)和完整的外膜转运
乳铁蛋白结合蛋白A(LbpA),它将共同诱导广泛的交叉保护免疫
对这些蛋白质的所有已知变种的反应。我们的新型一体化疫苗设计和评价
管道方法将在免疫分析中使用抗原变异体文库,并在定植中使用菌株文库
和感染模型来评估免疫反应的交叉反应和交叉保护特性
指导抗原组合的选择。我们将确定目标的全局序列多样性
抗原(LbpB和LbpA),然后开发具有代表性的变异LbpB的非结合突变体,这些突变体
预计将共同提供针对所有LbpB变体的广泛交叉保护性免疫反应。我们会
评价LbpB C叶带负电区的免疫学特性,测定
并确定LbpA表位的最佳组合
LbpB C叶,诱导对LbpA的广泛交叉保护反应。
最后一步将是整合NIH已建立的专注于开发抗原的拨款的结果
靶向转铁蛋白结合蛋白B和A(TbpB和TbpA)并确定其最佳组合
显示TbpA和LbpA表位的工程化TbpB和LbpB抗原诱导广泛的交叉保护
对所有四种抗原的免疫反应。对我们的正常和转基因小鼠的研究表明
针对TbpB或TbpA的抗原可以减少定植,因此开发一种将
消灭表达四种目标抗原中的任何一种的细菌是有希望的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CYNTHIA N CORNELISSEN其他文献
CYNTHIA N CORNELISSEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CYNTHIA N CORNELISSEN', 18)}}的其他基金
Starve and Kill: Engineered Antigens Targeting Nutrient Acquisition Pathways Essential for Gonococcal Infection and Disease
挨饿和杀死:针对淋球菌感染和疾病所必需的营养获取途径的工程抗原
- 批准号:
10595567 - 财政年份:2019
- 资助金额:
$ 10.05万 - 项目类别:
Starve and Kill: Engineered Antigens Targeting Nutrient Acquisition Pathways Essential for Gonococcal Infection and Disease
挨饿和杀死:针对淋球菌感染和疾病所必需的营养获取途径的工程抗原
- 批准号:
10355467 - 财政年份:2019
- 资助金额:
$ 10.05万 - 项目类别:
Rational design of transferrin binding protein-based vaccines to combat gonorrhea
合理设计基于转铁蛋白结合蛋白的淋病疫苗
- 批准号:
9888316 - 财政年份:2019
- 资助金额:
$ 10.05万 - 项目类别:
Using gonococcal TonB-dependent transporters as vaccine antigens
使用淋球菌 TonB 依赖性转运蛋白作为疫苗抗原
- 批准号:
10560825 - 财政年份:2019
- 资助金额:
$ 10.05万 - 项目类别:
Rational design of transferrin binding protein-based vaccines to combat gonorrhea
合理设计基于转铁蛋白结合蛋白的淋病疫苗
- 批准号:
10088372 - 财政年份:2019
- 资助金额:
$ 10.05万 - 项目类别:
Starve and Kill: Engineered Antigens Targeting Nutrient Acquisition Pathways Essential for Gonococcal Infection and Disease
挨饿和杀死:针对淋球菌感染和疾病所必需的营养获取途径的工程抗原
- 批准号:
10116966 - 财政年份:2019
- 资助金额:
$ 10.05万 - 项目类别:
相似海外基金
Elucidation of chromatin structure produced by CENP-B acidic region and application to new synthetic transcription factors.
CENP-B酸性区产生的染色质结构的阐明及其在新合成转录因子中的应用。
- 批准号:
22K14866 - 财政年份:2022
- 资助金额:
$ 10.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




