In Vivo Gene Editing for HIV-1 Cure

体内基因编辑治疗 HIV-1

基本信息

  • 批准号:
    10331787
  • 负责人:
  • 金额:
    $ 67.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-11 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY The overall hypothesis to be tested in this proposal is that a novel class of nanocapsules can effectively deliver gene editing components into the two primary HIV-1 target cells, T-cells and macrophages, and mutagenize the HIV-1 provirus such that replication and/or reactivation from latency is aborted. While gene modification is challenging, the advantage over small molecule drugs is that the HIV-1 provirus or genes necessary for HIV-1 expression and/or infection can be directly knocked down or knocked out without the need to kill the infected cells. Efficient gene-modification activity has been achieved by a number of systems including zinc-finger nucleases (ZNFs), transcription activator-like effector nucleases (TALENs), homing endonucleases, and most recently, the CRISPR/Cas9 system. Despite the promise of these new gene editing tools, therapeutic nucleic acids and proteins are rapidly lost from circulation and delivery vehicles cannot deliver gene modifying reagents by effective means to impact HIV-1 reservoirs. Thus, to date, all applications of gene modification for HIV-1 disease are currently practiced on cells removed from the body and transduced ex vivo. From our past experience with engineered lentiviral vectors, we recognize the difficult challenges of developing tools for in vivo gene editing, but also the promise and potential of bringing gene therapy into mainstream clinical practice. Our prior experience teaches us that viral vectors suffer from limitations in titer, adequate biodistribution, poor transduction of resting T-cells, complex genetic engineering, and immunogenicity. Recently, we developed a nanotechnology platform whereby individual macromolecules, protein, siRNA, gRNA, or DNA, are encapsulated and protected within a thin polymer shell by in situ polymerization of monomers and stabilized by environmentally responsive crosslinkers. In many respects, these “nanocapsules” are similar to virion particles, being of similar size and, like virions, protect the single encased gene. However, they have the advantage of simple manufacturing to higher “titer”, storage by freeze-dry, and, most importantly, the ability to easily alter the surface properties of chemical structure, charge, and ligand conjugation which determines factors such as biodistribution, cell binding, and entry. Since the properties of the nanocapsule are conferred by the shell which shields the cargo, virtually any nucleic acid or protein cargo can be interchanged. By judicious choice of polymer shell and crosslinkers, we successfully engineered nanocapsules which enhance biodistribution to reservoir sites, release a model cargo in time release fashion, and target specific cells in vivo through ligand recognition of cell surface molecules. Furthermore, these nanocapsules themselves are relatively non- immunogenic and shield the cargo from the immune system. These proof of principle studies begin to overcome the challenges outlined above and thus provide the basis for our proposed studies.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

IRVIN S.Y. CHEN其他文献

IRVIN S.Y. CHEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('IRVIN S.Y. CHEN', 18)}}的其他基金

Administrative Core
行政核心
  • 批准号:
    10160815
  • 财政年份:
    2020
  • 资助金额:
    $ 67.8万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10614634
  • 财政年份:
    2020
  • 资助金额:
    $ 67.8万
  • 项目类别:
(Attack)2: Genetic engineering of cellular and humoral immunity to cure HIV
(攻击)2:细胞和体液免疫基因工程治愈艾滋病毒
  • 批准号:
    10468647
  • 财政年份:
    2020
  • 资助金额:
    $ 67.8万
  • 项目类别:
(Attack)2: Genetic engineering of cellular and humoral immunity to cure HIV
(攻击)2:细胞和体液免疫基因工程治愈艾滋病毒
  • 批准号:
    10614633
  • 财政年份:
    2020
  • 资助金额:
    $ 67.8万
  • 项目类别:
(Attack)2: Genetic engineering of cellular and humoral immunity to cure HIV
(攻击)2:细胞和体液免疫基因工程治愈艾滋病毒
  • 批准号:
    10160814
  • 财政年份:
    2020
  • 资助金额:
    $ 67.8万
  • 项目类别:
(Attack)2: Genetic engineering of cellular and humoral immunity to cure HIV
(攻击)2:细胞和体液免疫基因工程治愈艾滋病毒
  • 批准号:
    9890819
  • 财政年份:
    2020
  • 资助金额:
    $ 67.8万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10468648
  • 财政年份:
    2020
  • 资助金额:
    $ 67.8万
  • 项目类别:
In Vivo Gene Editing for HIV-1 Cure
体内基因编辑治疗 HIV-1
  • 批准号:
    10549758
  • 财政年份:
    2019
  • 资助金额:
    $ 67.8万
  • 项目类别:
In Vivo Gene Editing for HIV-1 Cure
体内基因编辑治疗 HIV-1
  • 批准号:
    9753575
  • 财政年份:
    2019
  • 资助金额:
    $ 67.8万
  • 项目类别:
Anti-HIV Gene Therapy: Defend and Attack
抗 HIV 基因疗法:防御与攻击
  • 批准号:
    8899031
  • 财政年份:
    2015
  • 资助金额:
    $ 67.8万
  • 项目类别:

相似海外基金

Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
  • 批准号:
    24K21101
  • 财政年份:
    2024
  • 资助金额:
    $ 67.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
  • 批准号:
    24K11201
  • 财政年份:
    2024
  • 资助金额:
    $ 67.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
  • 批准号:
    24K11281
  • 财政年份:
    2024
  • 资助金额:
    $ 67.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
  • 批准号:
    EP/Z001145/1
  • 财政年份:
    2024
  • 资助金额:
    $ 67.8万
  • 项目类别:
    Fellowship
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
  • 批准号:
    2338890
  • 财政年份:
    2024
  • 资助金额:
    $ 67.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334777
  • 财政年份:
    2024
  • 资助金额:
    $ 67.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334775
  • 财政年份:
    2024
  • 资助金额:
    $ 67.8万
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
  • 批准号:
    2334776
  • 财政年份:
    2024
  • 资助金额:
    $ 67.8万
  • 项目类别:
    Continuing Grant
Cryo laser-ablation system (157+193nm) with 'triple-quad' plasma mass spectrometer, Cryo-LA-ICPMS/MS
带有“三重四极杆”等离子体质谱仪、Cryo-LA-ICPMS/MS 的冷冻激光烧蚀系统 (157 193nm)
  • 批准号:
    515081333
  • 财政年份:
    2023
  • 资助金额:
    $ 67.8万
  • 项目类别:
    Major Research Instrumentation
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
  • 批准号:
    2320040
  • 财政年份:
    2023
  • 资助金额:
    $ 67.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了