In Vivo Gene Editing for HIV-1 Cure
体内基因编辑治疗 HIV-1
基本信息
- 批准号:10549758
- 负责人:
- 金额:$ 67.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-11 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AIDS therapyAblationAddressAnti-Retroviral AgentsAntibody TherapyBLT miceBar CodesBindingBiodistributionBioinformaticsBiological ProductsCCR5 geneCD4 Positive T LymphocytesCRISPR/Cas technologyCell surfaceCellsChargeChemical EngineeringChemical StructureCirculationClinical ResearchComplexCrosslinkerDNADiseaseEducational process of instructingEncapsulatedEngineeringEnvironmentFreeze DryingGene DeliveryGene ModifiedGenesGenetic EngineeringGuide RNAHIV GenomeHIV-1HematopoieticHematopoietic stem cellsHomingImmune systemIn SituIn VitroIndividualInfectionIntravenousJournalsKnock-outLentivirus VectorLigandsLiverLymphoid TissueMacrophageMainstreamingModelingMutagensMutateNucleic AcidsOrganPatientsPharmaceutical PreparationsPolymersPositioning AttributePropertyProteinsProvirusesPublicationsReagentResistanceRestRoleScientistSiteSmall Interfering RNAStructure of parenchyma of lungSurface PropertiesSystemT-LymphocyteTestingTherapeuticThinnessTimeTissuesViral VectorVirionWorkbrain tissueclinical practicedelivery vehicleendonucleaseexperiencegene therapyimmunogenicityin vivointravenous injectionknock-downlentivirally transducedmacromoleculemanufacturemonomermouse modelnanocapsulenanoengineeringnanotechnology platformneoplastic cellnovelnucleasenucleic acid-based therapeuticsparticlepolymerizationpreclinical studyreactivation from latencyreceptorsmall moleculetooltranscription activator-like effector nucleasestransduction efficiencytranslational geneticsvectorvirtualzinc finger nuclease
项目摘要
PROJECT SUMMARY
The overall hypothesis to be tested in this proposal is that a novel class of nanocapsules can effectively deliver
gene editing components into the two primary HIV-1 target cells, T-cells and macrophages, and mutagenize
the HIV-1 provirus such that replication and/or reactivation from latency is aborted. While gene modification is
challenging, the advantage over small molecule drugs is that the HIV-1 provirus or genes necessary for HIV-1
expression and/or infection can be directly knocked down or knocked out without the need to kill the infected
cells. Efficient gene-modification activity has been achieved by a number of systems including zinc-finger
nucleases (ZNFs), transcription activator-like effector nucleases (TALENs), homing endonucleases, and most
recently, the CRISPR/Cas9 system. Despite the promise of these new gene editing tools, therapeutic nucleic
acids and proteins are rapidly lost from circulation and delivery vehicles cannot deliver gene modifying
reagents by effective means to impact HIV-1 reservoirs. Thus, to date, all applications of gene modification for
HIV-1 disease are currently practiced on cells removed from the body and transduced ex vivo. From our past
experience with engineered lentiviral vectors, we recognize the difficult challenges of developing tools for in
vivo gene editing, but also the promise and potential of bringing gene therapy into mainstream clinical practice.
Our prior experience teaches us that viral vectors suffer from limitations in titer, adequate biodistribution, poor
transduction of resting T-cells, complex genetic engineering, and immunogenicity. Recently, we developed a
nanotechnology platform whereby individual macromolecules, protein, siRNA, gRNA, or DNA, are
encapsulated and protected within a thin polymer shell by in situ polymerization of monomers and stabilized by
environmentally responsive crosslinkers. In many respects, these “nanocapsules” are similar to virion particles,
being of similar size and, like virions, protect the single encased gene. However, they have the advantage of
simple manufacturing to higher “titer”, storage by freeze-dry, and, most importantly, the ability to easily alter the
surface properties of chemical structure, charge, and ligand conjugation which determines factors such as
biodistribution, cell binding, and entry. Since the properties of the nanocapsule are conferred by the shell which
shields the cargo, virtually any nucleic acid or protein cargo can be interchanged. By judicious choice of
polymer shell and crosslinkers, we successfully engineered nanocapsules which enhance biodistribution to
reservoir sites, release a model cargo in time release fashion, and target specific cells in vivo through ligand
recognition of cell surface molecules. Furthermore, these nanocapsules themselves are relatively non-
immunogenic and shield the cargo from the immune system. These proof of principle studies begin to
overcome the challenges outlined above and thus provide the basis for our proposed studies.
项目摘要
在这项提议中要测试的总体假设是,一类新型纳米胶囊可以有效地递送
将基因编辑组分导入两种主要的HIV-1靶细胞,T细胞和巨噬细胞,并诱变
HIV-1前病毒,从而使复制和/或从潜伏期的再激活中止。虽然基因改造是
具有挑战性的是,与小分子药物相比,HIV-1前病毒或HIV-1所需的基因
表达和/或感染可以被直接敲低或敲除,而不需要杀死感染者
细胞包括锌指蛋白在内的许多系统已经实现了有效的基因修饰活性
核酸酶(ZNF)、转录激活因子样效应物核酸酶(TALEN)、归巢核酸内切酶和大多数核酸内切酶。
CRISPR/Cas9系统。尽管这些新的基因编辑工具有希望,
酸和蛋白质从循环中迅速丢失,并且递送载体不能递送基因修饰
通过有效的手段来影响HIV-1的储存库。因此,到目前为止,基因修饰的所有应用,
目前,HIV-1疾病是在从体内取出并体外转导的细胞上进行的。从过去的
基于我们在工程慢病毒载体方面的经验,我们认识到开发用于治疗的工具的困难挑战。
体内基因编辑,也是将基因治疗纳入主流临床实践的前景和潜力。
我们先前的经验告诉我们,病毒载体在滴度、足够的生物分布、差的生物学特性、以及在细胞内的生物学特性方面受到限制。
静息T细胞的转导、复杂的基因工程和免疫原性。最近,我们开发了一个
纳米技术平台,其中单个大分子,蛋白质,siRNA,gRNA或DNA,
通过单体的原位聚合将其封装并保护在薄的聚合物壳内,并通过
环境响应性交联剂。在许多方面,这些“纳米胶囊”类似于病毒粒子,
它们大小相似,像病毒体一样,保护单个被包裹的基因。然而,它们具有以下优点:
简单的制造,以更高的“滴度”,冷冻干燥储存,最重要的是,能够容易地改变
化学结构、电荷和配体共轭的表面性质,其决定因素如
生物分布、细胞结合和进入。由于纳米胶囊的性质是由
屏蔽货物,实际上任何核酸或蛋白质货物可以互换。通过明智选择
聚合物壳和交联剂,我们成功地设计了纳米胶囊,
储库位点,以时间释放方式释放模型货物,并通过配体在体内靶向特定细胞,
识别细胞表面分子。此外,这些纳米胶囊本身是相对非-
免疫原性和屏蔽货物免疫系统。这些原理证明研究开始,
克服上述挑战,从而为我们拟议的研究提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
IRVIN S.Y. CHEN其他文献
IRVIN S.Y. CHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('IRVIN S.Y. CHEN', 18)}}的其他基金
(Attack)2: Genetic engineering of cellular and humoral immunity to cure HIV
(攻击)2:细胞和体液免疫基因工程治愈艾滋病毒
- 批准号:
10468647 - 财政年份:2020
- 资助金额:
$ 67.8万 - 项目类别:
(Attack)2: Genetic engineering of cellular and humoral immunity to cure HIV
(攻击)2:细胞和体液免疫基因工程治愈艾滋病毒
- 批准号:
10614633 - 财政年份:2020
- 资助金额:
$ 67.8万 - 项目类别:
(Attack)2: Genetic engineering of cellular and humoral immunity to cure HIV
(攻击)2:细胞和体液免疫基因工程治愈艾滋病毒
- 批准号:
10160814 - 财政年份:2020
- 资助金额:
$ 67.8万 - 项目类别:
(Attack)2: Genetic engineering of cellular and humoral immunity to cure HIV
(攻击)2:细胞和体液免疫基因工程治愈艾滋病毒
- 批准号:
9890819 - 财政年份:2020
- 资助金额:
$ 67.8万 - 项目类别:
相似海外基金
心房細動に対するPulsed Field Ablationの組織創傷治癒過程を明らかにする網羅的研究
阐明房颤脉冲场消融组织伤口愈合过程的综合研究
- 批准号:
24K11201 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
- 批准号:
24K21101 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
遅延造影心臓MRIによる心房細動Ablation冷却効果の比較:28 vs. 31 mm Cryoballoon
使用延迟对比增强心脏 MRI 比较房颤消融冷却效果:28 毫米与 31 毫米 Cryoballoon
- 批准号:
24K11281 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334777 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334775 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Continuing Grant
InSPACE-VT_Development and Validation of Virtual Pace Mapping to Guide Catheter Ablation of Ventricular Tachycardia
InSPACE-VT_虚拟起搏测绘的开发和验证以指导室性心动过速导管消融
- 批准号:
EP/Z001145/1 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Fellowship
Collaborative Research: RUI: Frontal Ablation Processes on Lake-terminating Glaciers and their Role in Glacier Change
合作研究:RUI:湖终止冰川的锋面消融过程及其在冰川变化中的作用
- 批准号:
2334776 - 财政年份:2024
- 资助金额:
$ 67.8万 - 项目类别:
Continuing Grant
MRI: Acquisition of a Laser Ablation - Inductively Coupled Plasma - Triple Quadrupole - Mass Spectrometer (LA-ICP-QQQ-MS) System For Research and Education
MRI:获取用于研究和教育的激光烧蚀 - 电感耦合等离子体 - 三重四极杆 - 质谱仪 (LA-ICP-MS/MS) 系统
- 批准号:
2320040 - 财政年份:2023
- 资助金额:
$ 67.8万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E: An experimentally validated, interactive, data-enabled scientific computing platform for cardiac tissue ablation characterization and monitoring
合作研究:CDS
- 批准号:
2245152 - 财政年份:2023
- 资助金额:
$ 67.8万 - 项目类别:
Standard Grant