Discovery of Gram-negative permeable chemical probes for tRNA methylation
发现用于 tRNA 甲基化的革兰氏阴性渗透性化学探针
基本信息
- 批准号:10331304
- 负责人:
- 金额:$ 68.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAnabolismAnti-Bacterial AgentsAntibioticsAnticodonBacteriaBindingBiological AssayCell DeathCell DensityCellsCellular AssayCessation of lifeChemical StructureChemicalsClinicalCodon NucleotidesCollectionCrystallizationDoseDrug Binding SiteDrug EffluxDrug IndustryDrug TargetingDrug resistanceDrug usageEscherichia coliEventExhibitsFluorescenceGene ExpressionGenesGenetic TranscriptionGram-Negative BacteriaGrowthHomo sapiensHumanInfectionInitiator CodonLigand BindingMembraneMembrane ProteinsMessenger RNAMethylationModelingModern MedicineModificationMulti-Drug ResistanceNatural ProductsNoisePermeabilityPharmaceutical ChemistryPharmaceutical PreparationsPhenotypePositioning AttributeProtein BiosynthesisProteinsPseudomonas aeruginosaPublic HealthReading FramesResistanceRibosomesS-AdenosylhomocysteineSalmonellaSalmonella entericaSeriesShapesSideSignal TransductionSiteSpecificityStructureStructure-Activity RelationshipSynthesis ChemistryTestingTherapeutic EffectTimeTransfer RNATransferaseTranslationsanalogantimicrobialantimicrobial drugbactericidebasecell growthchemical propertyclinically relevantdrug discoveryefflux pumpgene discoverygenome-wide analysishigh throughput screeningimprovedin silicoinhibitormembrane activityminimal inhibitory concentrationnovelpathogenpreemptprematureresistance mutationresponsescaffoldscreeningsinefunginsmall moleculesuccess
项目摘要
Project Summary. Gram-negative (Gram (-)) bacteria are intrinsically resistant to drugs, due to a double
membrane structure that acts as a permeability barrier to drugs and as an anchor for efflux pumps. Many Gram
(-) bacteria have developed multi-drug resistance, which poses one of the most pressing issues in modern
medicine. Antibiotics are barred and extruded from cells and cannot reach high enough intracellular
concentrations to exert a therapeutic effect. While efforts have focused on targeting one membrane protein at a
time, resistance mutations can quickly develop. We propose to target the m1G37-tRNA methylation catalyzed
by TrmD to inhibit biosynthesis of multiple membrane proteins simultaneously, thus reducing drug barrier and
efflux and accelerating bactericidal action. TrmD is a bacteria-specific S-adenosyl-methionine (AdoMet)-
dependent methyl transferase that controls accuracy of the protein-synthesis reading frame. Loss of TrmD
increases +1 frameshifts and terminates protein synthesis prematurely. We have discovered that genes for
multiple membrane proteins and efflux pumps in E. coli and other Gram (-) bacteria contain TrmD-dependent
codons near the start of the reading frame. We hypothesize that targeting TrmD will reduce protein synthesis of
all of these genes. By reducing multiple membrane- and efflux-proteins at once, we propose that targeting
TrmD offers a novel solution to an unmet need. While AstraZeneca (AZ) has attempted to target TrmD, the
isolated hits lacked the cell-permeability needed to exhibit an antibacterial effect. We hypothesize that
successful targeting must identify compounds that are cell-permeable and selective for TrmD over the human
counterpart Trm5. To test this hypothesis, we have developed and optimized a cell-based fluorescence assay
for E. coli TrmD (EcTrmD), in which we will mix a 1:1 ratio of an E. coli mCherry (mCh)-expressing strain
dependent on TrmD for survival and a separate YFP-expressing strain dependent on Trm5 for survival to
discover cell-permeable compounds that selectively inhibit the TrmD-dependent but not the Trm5-dependent
strain. In Aim 1, we will use this cell-based assay, which is high-throughput screening (HTS)-ready, in a large-
scale campaign to discover cell-permeable and selective inhibitors of EcTrmD. We will screen a diverse
collection of ~180,000 compounds and a collection of 10,000 natural products to identify inhibitors and remove
false positives. In Aim 2, we will assess hits in secondary assays to determine their potency and mechanism of
action. We will fractionate natural products to active compounds. We will also test hits on Gram (-) bacteria
Salmonella and Pseudomonas aeruginosa. In Aim 3, we will use whole-cell assays to identify hits that inhibit
cell growth and display TrmD-deficient phenotypes. We will assess initial structure-activity relationship (SAR)
of each cluster of hits by analysis of ~20 analogs selected from in silico modeling in our TrmD crystal structure
with a bound tRNA and sinefungin (non-reactive AdoMet analog). These initial hits will serve as powerful
probes in a new paradigm of antibiotic discovery that inhibits the drug barrier and efflux of Gram (-) bacteria.
项目摘要。革兰氏阴性(革兰氏(-))细菌本质上对药物具有耐药性,这是由于双
作为药物渗透屏障和外排泵的锚的膜结构。许多革兰氏
(-)细菌已经产生了多重耐药性,这是现代医学中最紧迫的问题之一。
药抗生素被阻止并从细胞中挤出,不能到达足够高的细胞内
浓度以发挥治疗效果。虽然努力集中在靶向一种膜蛋白,
随着时间的推移,耐药性突变会迅速发展。我们建议靶向m1 G37-tRNA甲基化催化
通过TrmD同时抑制多种膜蛋白的生物合成,从而降低药物屏障,
外排和加速杀菌作用。TrmD是细菌特异性S-腺苷甲硫氨酸(S-腺苷甲硫氨酸)。
控制蛋白质合成阅读框准确性的依赖性甲基转移酶。TrmD丢失
增加+1移码并过早终止蛋白质合成。我们发现,
多个膜蛋白和外排泵。大肠杆菌和其他革兰氏(-)细菌含有TrmD依赖性
靠近阅读框开始的密码子。我们假设靶向TrmD将减少蛋白质合成,
所有这些基因。通过同时减少多种膜蛋白和外排蛋白,我们提出靶向
TrmD为未满足的需求提供了一种新的解决方案。虽然阿斯利康(AZ)试图瞄准TrmD,
分离的命中物缺乏表现出抗菌效果所需的细胞渗透性。我们假设
成功的靶向必须鉴定出细胞可渗透的化合物,并且对TrmD的选择性超过对人的选择性。
对应物Trm 5。为了验证这一假设,我们开发并优化了一种基于细胞的荧光检测方法,
大肠coli TrmD(EcTrmD)中,将1:1比例的E.大肠杆菌mCherry(mCh)表达菌株
依赖于TrmD存活和依赖于Trm 5存活的单独的表达YFP的菌株,
发现选择性抑制TrmD依赖性但不抑制Trm 5依赖性的细胞渗透性化合物
株在目标1中,我们将使用这种基于细胞的测定,其是高通量筛选(HTS)就绪的,在大规模的
大规模的运动,以发现细胞渗透性和选择性抑制剂的EcTrmD。我们将筛选一个多样化的
收集约180,000种化合物和10,000种天然产物,以识别抑制剂并去除
假阳性在目标2中,我们将在二级试验中评估命中,以确定其效力和机制。
行动上我们将把天然产物分馏成活性化合物。我们还将测试革兰氏(-)细菌的命中
沙门氏菌和绿脓杆菌。在目标3中,我们将使用全细胞测定来鉴定抑制
细胞生长并显示TrmD缺陷表型。我们将评估初始构效关系(SAR)
通过分析从我们的TrmD晶体结构中的计算机模拟中选择的约20种类似物,
与结合的tRNA和sinefungin(非反应性的抗甲硫氨酸类似物)。这些最初的打击将作为强大的
在抗生素发现的新范例中,探针抑制革兰氏(-)细菌的药物屏障和外排。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How to Untie a Protein Knot.
- DOI:10.1016/j.str.2019.07.008
- 发表时间:2019-08
- 期刊:
- 影响因子:5.7
- 作者:Sitao Yin;Brittiny Dhital;Ya-Ming Hou
- 通讯作者:Sitao Yin;Brittiny Dhital;Ya-Ming Hou
A Label-Free Assay for Aminoacylation of tRNA.
- DOI:10.3390/genes11101173
- 发表时间:2020-10-07
- 期刊:
- 影响因子:3.5
- 作者:Gamper H;Hou YM
- 通讯作者:Hou YM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ya-Ming Hou其他文献
Ya-Ming Hou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ya-Ming Hou', 18)}}的其他基金
A cell model of YARS2-associated childhood-onset mitochondrial disease
YARS2 相关的儿童期发病线粒体疾病的细胞模型
- 批准号:
10575369 - 财政年份:2023
- 资助金额:
$ 68.42万 - 项目类别:
TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
- 批准号:
10307014 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
- 批准号:
10625857 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
TrmD-targeting actinobacterial natural products as next generation antibiotics
TrmD靶向放线菌天然产物作为下一代抗生素
- 批准号:
10438880 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
Exploring 3Dpol for RNA sequencing in real time
探索 3Dpol 实时 RNA 测序
- 批准号:
10166895 - 财政年份:2020
- 资助金额:
$ 68.42万 - 项目类别:
Exploring 3Dpol for RNA sequencing in real time
探索 3Dpol 实时 RNA 测序
- 批准号:
9974889 - 财政年份:2020
- 资助金额:
$ 68.42万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 68.42万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 68.42万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 68.42万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 68.42万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 68.42万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 68.42万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 68.42万 - 项目类别:
Discovery Early Career Researcher Award