Reducing Metal Artifacts in Clinical X-Ray CT via Image Reconstruction Techniques

通过图像重建技术减少临床 X 射线 CT 中的金属伪影

基本信息

  • 批准号:
    10330750
  • 负责人:
  • 金额:
    $ 37.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2025-05-05
  • 项目状态:
    未结题

项目摘要

Title: Reducing Metal Artifacts in Clinical X-Ray CT via Image Reconstruction Techniques Abstract: Metallic implants such as dental fillings, surgical clips, coils, wires, and orthopedic hardware inside the patient body are very helpful in providing patients with better health benefits. On the other hand, they may cause artifacts in many medical imaging modalities such as in x-ray CT and MRI. Even though significant advances in both hardware and software have been made over the years, metal artifacts in x-ray CT scans are still troublesome. The metal artifacts appear as dark shadows and bright streaks. These artifacts, if not corrected, can severely degrade the image quality and decrease the diagnostic value of the clinical examination. X-ray generation in an x-ray tube is very inefficient; the efficiency is much less than 1%. A high photon count requirement results in the acceptance of a wide energy spectrum, which is contributed by both Bremsstrahlung and characteristic radiation. Metallic objects inside the patient body can cause photon starvation and beam hardening. These effects are nonlinear and difficult to establish an exact mathematical model for them. One of the state-of-the-art remedies is to use the dual-energy CT to measure two sets of projections, and then by using a mathematical model and combining these two data sets to estimate a set of synthetic monoenergetic x-ray measurements. Another one of the remedies is the use of a metal artifact reduction (MAR) algorithm that replaces the corrupted projection measurements in the detector with interpolation from neighboring uncorrupted projections. In data starvation situations, the dual-energy methods are not effective. The current MAR algorithms are still immature, and they may create new artifacts while trying to suppress the metal artifacts. This is a renewal application of our previous R15 grant entitled “Fast and Robust Low-Dose X-Ray CT Image Reconstruction,” in which we have successfully developed image reconstruction algorithms to combat noise. Some of our ideas formed during the last three years can be further advanced into new ideas for metal artifact reduction in x-ray CT. In this R15 renewal, we will focus on new metal artifact reduction (MAR) algorithm development based on conventional single-energy data acquisition. The innovation is the new way to set up the objective functions for optimization. The uniqueness of our objective functions is that they do not have a data fidelity term; they only contain the Bayesian terms. The Bayesian terms are formed from the metal artifact features. A gradient descent algorithm is used to optimize the objective functions and a new set of un-corrupted measurements are estimated. The final image is reconstructed by the filtered backprojection (FBP) algorithm. The proposed algorithms are cost-effective. We hypothesize that the proposed methods will be more effective than the state-of-the-art MAR methods available for commercial CT scanners. This hypothesis will be carefully evaluated in this renewed R15. Our clinical collaborators at University of Utah HealthCare will work with us closely by providing us clinical data and professional evaluation advice. This R15 project provides Utah Valley University (UVU) students with hands-on opportunities and experiences of performing real-world research in the field of healthcare. It will stimulate the interests of students so that they consider a career in biomedical and bioengineering field/industry.
题目:通过图像重建减少临床x线CT中的金属伪影

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimation of the Initial Image's Contributions to the Iterative Landweber Reconstruction.
Development of a Solvability Map.
  • DOI:
    10.18103/mra.v10i11.3312
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zeng, Gengsheng L
  • 通讯作者:
    Zeng, Gengsheng L
Sparse-view tomography via displacement function interpolation.
通过位移函数插值进行稀疏视图断层扫描。
A back-projection-and-filtering-like (BPF-like) reconstruction method with the deep learning filtration from listmode data in TOF-PET.
  • DOI:
    10.1002/mp.15520
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Lv, Li;Zeng, Gengsheng L.;Zan, Yunlong;Hong, Xiang;Guo, Minghao;Chen, Gaoyu;Tao, Weijie;Ding, Wenxiang;Huang, Qiu
  • 通讯作者:
    Huang, Qiu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gengsheng Zeng其他文献

Gengsheng Zeng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
  • 批准号:
    LP170100311
  • 财政年份:
    2018
  • 资助金额:
    $ 37.38万
  • 项目类别:
    Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
  • 批准号:
    1736326
  • 财政年份:
    2017
  • 资助金额:
    $ 37.38万
  • 项目类别:
    Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 37.38万
  • 项目类别:
    Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
  • 批准号:
    375876714
  • 财政年份:
    2017
  • 资助金额:
    $ 37.38万
  • 项目类别:
    Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 37.38万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 37.38万
  • 项目类别:
    Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
  • 批准号:
    1686-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 37.38万
  • 项目类别:
    Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
  • 批准号:
    8689532
  • 财政年份:
    2014
  • 资助金额:
    $ 37.38万
  • 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
  • 批准号:
    1329780
  • 财政年份:
    2013
  • 资助金额:
    $ 37.38万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
  • 批准号:
    1329745
  • 财政年份:
    2013
  • 资助金额:
    $ 37.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了