Affective science and smoking cessation: Real time real world assessment
情感科学和戒烟:实时现实世界评估
基本信息
- 批准号:10330566
- 负责人:
- 金额:$ 60.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-19 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAffectiveAlgorithmsAngerBehavioralCause of DeathCellular PhoneCharacteristicsCognitionComplementComplexDataDepressed moodEcological momentary assessmentEmotionalEmotionsEnvironmentFailureFoundationsFrequenciesGeographic Information SystemsGeographyHomeInformal Social ControlInterventionKnowledgeLinkLongitudinal cohort studyMachine LearningMeasurementMediatingMediator of activation proteinModelingOutcomeParticipantPatient Self-ReportPhysiologicalPlayPositioning AttributeProcessPublic HealthReal-Time SystemsReportingResearchRiskRisk BehaviorsRisk ReductionRoleScienceSmokerSmokingSmoking Cessation InterventionStressSystemTestingTimeTobaccoTobacco useVolitionadaptive interventionaddictionadvanced analyticsbasecancer preventioncancer riskcancer typedisabilityeffective interventionexperienceheart rate variabilityknowledge basemobile computingnegative affectprimary outcomerisk prediction modelrole modelsmoking cessationsuccesswireless
项目摘要
Tobacco use plays a causal role in almost 20 different types of cancer, and although smoking
cessation is a cornerstone of cancer risk reduction, the vast majority of smoking quit attempts
fail. Numerous conceptual models, as well as a large body of empirical evidence, underscore that
affect is a potent determinant of smoking lapse. Unfortunately, very little is known about how
the constellation and temporal dynamics of distinct emotions and other factors play out in real
time in the real world to influence lapse risk. This lack of knowledge severely hampers both our
conceptual models and our ability to optimally intervene. Thus, the overarching objectives of
this research are to create a more detailed and comprehensive conceptual model of the role of
distinct emotions in self-regulation, as well as the technical, empirical, and analytic foundation
necessary to develop effective interventions for smoking cessation and other cancer risk
behaviors that can target real time, real world mechanisms. The proposed research directly
addresses several objectives from the PAR including the influence of distinct emotions and
their time course on cancer risk behaviors, whether the role of distinct emotions is altered by
the presence of other emotions (e.g., “blended” emotional states), and how the influence of
affective experience is modified by context. The proposed longitudinal cohort study among 300
smokers attempting to quit is guided by a conceptual framework grounded in affective science
and conceptual models of self-regulation and addiction. Participants will be followed from 1
week prior to their quit date through 6 months post-quit date. They will be assessed from 1 week
pre-quit date through 2 weeks post-quit date using AutoSense, geographic positioning system
(GPS), and ecological momentary assessment (EMA). AutoSense, GPS, and EMA collect real
time data in natural environments, communicate wirelessly with each other, and data are
processed in real time on a smartphone. AutoSense detects specific behavioral and physiologic
“signatures” of smoking (the primary outcome) and self regulatory capacity (an intermediate
outcome; assessed using high frequency heart rate variability) in real time. GPS real time spatial
tracking will be linked with spatially and temporally relevant characteristics of the environment
using geographic information system (GIS) data. EMAs assess self-reported emotions,
cognition, and context. Analyses utilize advanced dynamic risk prediction models and machine
learning approaches to model the dynamics of real time, real world associations among distinct
emotions, SRC, and lapse.
吸烟在近20种不同类型的癌症中起着因果作用,尽管吸烟
戒烟是降低癌症风险的基石,绝大多数人尝试戒烟
失败众多的概念模型以及大量的经验证据都强调,
情感是戒烟的重要决定因素。不幸的是,我们对它是如何运作的知之甚少。
不同情绪和其他因素的星座和时间动态在真实的中发挥作用,
时间在真实的世界中影响失效风险。这种知识的缺乏严重阻碍了我们的
概念模型和我们最佳干预的能力。因此,
本研究旨在建立一个更详细和全面的概念模型,
自我调节中的不同情绪,以及技术,经验和分析基础
有必要为戒烟和其他癌症风险制定有效的干预措施
可以针对真实的时间、真实的世界机制的行为。研究建议直接
解决了PAR的几个目标,包括不同情绪的影响,
他们对癌症风险行为的时间进程,不同情绪的作用是否被改变,
其他情绪的存在(例如,“混合”情绪状态),以及
情感体验受语境的影响。拟在300名受试者中进行纵向队列研究,
试图戒烟的吸烟者受到基于情感科学的概念框架的指导
以及自我调节和成瘾的概念模型。参与者将从1
戒烟前一周至戒烟后6个月。他们将从1周开始评估
使用AutoSense地理定位系统,从戒烟前日期到戒烟后2周日期
(GPS)生态瞬时评价(EMA)。AutoSense、GPS和EMA收集真实的
在自然环境中的时间数据,彼此无线通信,并且数据被
在智能手机上进行真实的处理。AutoSense检测特定的行为和生理
吸烟的“特征”(主要结果)和自我调节能力(中间结果)
结果;使用高频心率变异性进行评估)。GPS真实的时空
跟踪将与环境的空间和时间相关特征相联系
利用地理信息系统(GIS)数据。EMA评估自我报告的情绪,
认知和语境。分析利用先进的动态风险预测模型和机器
学习方法来模拟真实的时间的动态,真实的世界之间的不同关联,
情绪SRC和失误
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cho Yan Lam其他文献
Cho Yan Lam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cho Yan Lam', 18)}}的其他基金
Affective science and smoking cessation: Real time real world assessment
情感科学和戒烟:实时现实世界评估
- 批准号:
10545164 - 财政年份:2018
- 资助金额:
$ 60.42万 - 项目类别:
Socioeconomic status, stress, and smoking cessation
社会经济地位、压力和戒烟
- 批准号:
9754578 - 财政年份:2017
- 资助金额:
$ 60.42万 - 项目类别:
Eliminating Tobacco-Related Disparities amount African American Smokers
消除与烟草相关的差异 非洲裔美国吸烟者数量
- 批准号:
9902662 - 财政年份:2016
- 资助金额:
$ 60.42万 - 项目类别:
Using Ecolog. Momentary Assess. To Examine Pain & Smoking In Head & Neck Cancer P
使用生态。
- 批准号:
7678900 - 财政年份:2009
- 资助金额:
$ 60.42万 - 项目类别:
Using Ecolog. Momentary Assess. To Examine Pain & Smoking In Head & Neck Cancer P
使用生态。
- 批准号:
7802901 - 财政年份:2009
- 资助金额:
$ 60.42万 - 项目类别:
相似海外基金
Affective Virality on Social Media: The Role of Culture and Ideal Affect
社交媒体上的情感病毒传播:文化和理想情感的作用
- 批准号:
2214203 - 财政年份:2022
- 资助金额:
$ 60.42万 - 项目类别:
Standard Grant
'Essaying Affect: the contemporary essay as a place of affective possibility'
“散文情感:当代散文作为情感可能性的场所”
- 批准号:
2438692 - 财政年份:2020
- 资助金额:
$ 60.42万 - 项目类别:
Studentship
Influence of Physical Activity on Daily Positive Affect & Affective Neural Activity in Preschoolers
体力活动对日常积极影响的影响
- 批准号:
10231121 - 财政年份:2018
- 资助金额:
$ 60.42万 - 项目类别:
Influence of Physical Activity on Daily Positive Affect & Affective Neural Activity in Preschoolers
体力活动对日常积极影响的影响
- 批准号:
10475608 - 财政年份:2018
- 资助金额:
$ 60.42万 - 项目类别:
Influence of Physical Activity on Daily Positive Affect & Affective Neural Activity in Preschoolers
体力活动对日常积极影响的影响
- 批准号:
10474838 - 财政年份:2018
- 资助金额:
$ 60.42万 - 项目类别:
Affect- and Psychotechnolog Studies. Emergent Technologies of Affective and Emotional (Self-)Control
影响和心理技术研究。
- 批准号:
279966032 - 财政年份:2015
- 资助金额:
$ 60.42万 - 项目类别:
Scientific Networks
Does minute listeners' head movement affect affective aspects of human spatial hearing perception?
听众的微小头部运动是否会影响人类空间听觉感知的情感方面?
- 批准号:
26540093 - 财政年份:2014
- 资助金额:
$ 60.42万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
RI: Small: An Affect-Adaptive Spoken Dialogue System that Responds Based on User Model and Multiple Affective States
RI:Small:基于用户模型和多种情感状态进行响应的情感自适应口语对话系统
- 批准号:
0914615 - 财政年份:2009
- 资助金额:
$ 60.42万 - 项目类别:
Standard Grant
Affective Rendering ? Toward the Realization of Affect Adapted Image Synthesis
情感渲染?
- 批准号:
21300033 - 财政年份:2009
- 资助金额:
$ 60.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Study by Means of Analysis of Structure of Covariunce, on Factors which Affect Japanese Language Acquisition and Mother Tongue Maintenance of Children from Overseas-an Integral Study of Cognitive Linguistic / Affective / Socio Cultural Factors-
协方差结构分析影响海外儿童日语习得和母语维持的因素研究-认知语言/情感/社会文化因素的综合研究-
- 批准号:
11480051 - 财政年份:1999
- 资助金额:
$ 60.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)