A precision tumor neoantigen identification pipeline for cytotoxic T-lymphocyte-based cancer immunotherapies
用于基于细胞毒性 T 淋巴细胞的癌症免疫疗法的精准肿瘤新抗原识别流程
基本信息
- 批准号:10332251
- 负责人:
- 金额:$ 71.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAlkylationAllelesAlternative SplicingAntigensBasic ScienceBindingBioinformaticsBiopsyBiopsy SpecimenBlood capillariesCD8-Positive T-LymphocytesCalculiCell surfaceCellsChemicalsClinicalCodeComplexComputer softwareCysteineCytotoxic T-LymphocytesDana-Farber Cancer InstituteDataData CollectionData FilesDepositionDetectionDiseaseDisease remissionEpitopesEvolutionFine-needle biopsyFutureGene FusionGenomic SegmentGenomicsGoldHLA AntigensHLA-A geneImmuneImmune systemImmunologic MonitoringImmunology procedureImmunotherapyIndividualIndustrializationIonsLiquid ChromatographyMachine LearningMajor Histocompatibility ComplexMalignant NeoplasmsMass Spectrum AnalysisMediatingMessenger RNAMethodsMinorityModificationNeedle biopsy procedureOperative Surgical ProceduresPatientsPatternPeptide SynthesisPeptide/MHC ComplexPeptidesPerformancePolyadenylationPrincipal InvestigatorProcessProteinsProtocols documentationRecoveryReference StandardsRunningSamplingService settingServicesSiteSurfaceT-LymphocyteTechnologyTherapeuticTimeTissuesTranslatingTranslational ResearchUntranslated RNAVaccinationWestern Blottingbasebioinformatics pipelinecancer cellcancer genomecancer immunotherapydesignglobal healthimmune checkpoint blockadeindustry partnerinsertion/deletion mutationinstrumentationnanoscaleneoantigensneoplastic cellnext generation sequencingnovelprediction algorithmpressurepublic databasetranscriptome sequencingtranscriptomicstumorvaccine development
项目摘要
ABSTRACT
Programming the immune system to detect neoantigens and destroy tumors is critical for effective
immunotherapy. Until now, bioinformatic prediction of neoepitopes on tumors from Next Generation Sequencing
(NGS) information has been used alone or in conjunction with immunological assays to indirectly infer neoepitope
identification. Unfortunately, only a small fraction of predicted epitopes are surface-displayed as HLA-bound
peptides (pMHC), a process required for cytolytic T lymphocyte (CTL) targeting. Moreover, immunologic assays
suffer from both high false positive and false negative rates, confounding correct identification. Conventional
mass spectrometry (MS) approaches to interrogate the pMHC, referred to as the cell's immune peptidome, suffer
from poor HLA recovery, requirement for multiple sample runs to achieve adequate peptide coverage and
necessitate large numbers of tumor cells, all features impractical for routine clinical use. Our Academic-Industrial
Partnership (AIP) advances the creation of a commercial pipeline to deliver personalized tumor neoantigen
identification, integrating NGS-based genomics and transcriptomics, bioinformatics, chemical peptidomics and
a novel, ultrasensitive form of MS. Our interdisciplinary/multi-institutional strategic alliance combines basic
research at Dana Farber Cancer Institute with industrial expertise at Curacloud Corporation and JPT Peptide
Technologies. We propose deployment of an attomole (10-18) Poisson detection liquid chromatography-data
independent acquisition (LC-DIA) MS method for antigen discovery to electronically record and capture the entire
immune peptidome comprising both numerous self-peptides and sparse neoantigens in a single run from small
numbers of tumor cells (106) retrieved by clinical needle biopsy. This approach changes the aforementioned MS
calculus and permits neoantigen search at any point following data collection using existing commercially
marketed MS instrumentation. In Aim 1 neoepitope candidates shall be chemically synthesized in high
throughput pools of up to 6,000 peptides per nanoscale run by JPT for MS fragmentation analysis and elution
mapping reference standards for definitive neoantigen identification using LC-DIAMS on individual tumor
samples based on DFCI technology, optimizing each step. In Aim 2 we shall use NGS data from tumor cells in
conjunction with bioinformatics at Curacloud to predict neoepitopes arising from coding and non-coding regions
capable of interacting with each HLA-A, -B and/or -C allele of a patient. Machine learning-based neoepitope
ranking algorithms incorporating MS data and other results shall be developed for candidate prioritization. An
end user service shall be established involving all aforementioned integrative technologies. From initial tumor
biopsy to identification of neoepitopes, a time scale of approximately one month is anticipated. This generic
neoepitope precision identification pipeline is applicable to multiple immunotherapy protocols as well as immune
monitoring of tumor evolution at the original and any metastatic site, informing therapeutic adjustments as
required.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ELLIS L REINHERZ其他文献
ELLIS L REINHERZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ELLIS L REINHERZ', 18)}}的其他基金
A precision tumor neoantigen identification pipeline for cytotoxic T-lymphocyte-based cancer immunotherapies
用于基于细胞毒性 T 淋巴细胞的癌症免疫疗法的精准肿瘤新抗原识别流程
- 批准号:
10581488 - 财政年份:2022
- 资助金额:
$ 71.33万 - 项目类别:
NMR-based dynamic assessment of TCR transmembrane conformational states linked to T cell function
基于 NMR 的 TCR 跨膜构象状态动态评估与 T 细胞功能相关
- 批准号:
9789827 - 财政年份:2018
- 资助金额:
$ 71.33万 - 项目类别:
相似海外基金
Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
- 批准号:
10735154 - 财政年份:2023
- 资助金额:
$ 71.33万 - 项目类别:
The role of histidine phosphorylation in the DNA alkylation damage response
组氨酸磷酸化在 DNA 烷基化损伤反应中的作用
- 批准号:
10581923 - 财政年份:2023
- 资助金额:
$ 71.33万 - 项目类别:
Studies of Chemically Labile Alkylation Damage in DNA
DNA 中化学不稳定烷基化损伤的研究
- 批准号:
10769108 - 财政年份:2023
- 资助金额:
$ 71.33万 - 项目类别:
DABCO and Quinuclidine as HAT Catalysts in Direct Arylation and Alkylation of Aldehyde's C-H Bonds via Photoredox Catalysis: A computational stud
DABCO 和奎宁环作为 HAT 催化剂通过光氧化还原催化醛的 C-H 键直接芳基化和烷基化:一项计算研究
- 批准号:
2876395 - 财政年份:2022
- 资助金额:
$ 71.33万 - 项目类别:
Studentship
CAREER: Engineered SAM-Dependent Enzymes for Stereoselective Alkylation Reactions
职业:用于立体选择性烷基化反应的工程 SAM 依赖性酶
- 批准号:
2145749 - 财政年份:2022
- 资助金额:
$ 71.33万 - 项目类别:
Standard Grant
Characterizing the role of RNF25 in repair of DNA alkylation in blood cancers
表征 RNF25 在血癌 DNA 烷基化修复中的作用
- 批准号:
10438061 - 财政年份:2022
- 资助金额:
$ 71.33万 - 项目类别:
Characterizing the role of RNF25 in repair of DNA alkylation in blood cancers
表征 RNF25 在血癌 DNA 烷基化修复中的作用
- 批准号:
10580070 - 财政年份:2022
- 资助金额:
$ 71.33万 - 项目类别:
Alkyl(aryl)iodonium Reagents for Late-Stage Alkylation
用于后期烷基化的烷基(芳基)碘鎓试剂
- 批准号:
EP/W00934X/1 - 财政年份:2022
- 资助金额:
$ 71.33万 - 项目类别:
Research Grant
Ketone Alkylation Using Simple Olefins: A Sustainable Chemistry Approach
使用简单烯烃进行酮烷基化:一种可持续的化学方法
- 批准号:
2154632 - 财政年份:2022
- 资助金额:
$ 71.33万 - 项目类别:
Standard Grant
Development of New Methods for Asymmetric Synthesis and Nitrogen Fixation by using dihydropyridine derivatives as Alkylation Reagents
以二氢吡啶衍生物为烷基化试剂开发不对称合成和固氮新方法
- 批准号:
22J14253 - 财政年份:2022
- 资助金额:
$ 71.33万 - 项目类别:
Grant-in-Aid for JSPS Fellows