Identifying low dose measurement error corrected effects of multiple pollutants using causal modeling
使用因果模型识别多种污染物的低剂量测量误差校正效应
基本信息
- 批准号:10332715
- 负责人:
- 金额:$ 34.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdmission activityAdvisory CommitteesAgeAirAir PollutantsAir PollutionAtrial FibrillationAttenuatedCensusesCessation of lifeChinaChronicClimateCodeCritiquesDataData SetDeath CertificatesDeath RateDetectionDoseEventExposure toHealthHospitalizationIndiaIndividualJointsMeasurementMeasuresMedicaidMedicareMedicare/MedicaidMethodsModelingMorbidity - disease rateMyocardial InfarctionNatureNeighborhoodsNitratesNitrogen DioxideObservational StudyOutcomeOzoneParticipantPollutionPopulationPublic HealthQuasi-experimentRecordsResolutionRiskRisk EstimateScienceScoring MethodStrokeSubgroupSulfateTechniquesTemperatureTimeambient air pollutionanalytical methodbaseburden of illnesscausal modelcohortcostdesignepidemiology studyexperiencefine particleshealth disparityhospitalization ratesmortalitynovelparticlepollutantpreventresponsesimulation
项目摘要
The Global Burden of Disease estimates that ambient air pollution is responsible for over 4 million deaths per
year, yet regulators in the US, EU, India, and China have been reluctant to tighten standards, which can be
costly. Those costs and the observational nature of the epidemiology studies suggesting a tightening of
existing standards would be protective of the public’s health is a major reason for this reluctance. To date,
separate standards have not been set for particle components, and health impact assessments rarely
examine environmental equity because of the paucity of subgroup-specific concentration-response functions.
Further, studies on the effects of temperature on mortality and morbidity have focused on risk associated with
short-term exposure, and not longer-term effects which may be larger. We propose to address these gaps by
using national data (US Medicare and Medicaid data, and all age Death Certificate data from multiple states
geocoded to a census block group) on mortality and hospital admissions; to use causal modeling techniques
robust to omitted confounders by design; to extend methods for environmental mixtures to large data settings
and use them to assess nonlinear and interactive effects of exposures; to use state of the art models
estimating daily air pollution and temperature exposure for the contiguous US on a 1km grid for 18 years; to
use state of the art methods to estimate exposure error in the contiguous US, to use restriction and spline
methods to address low dose effects, and to develop and use state of the art measurement error correction
methods to account for exposure error when estimating these risks.
Specifically, we will use quasi-experimental designs (difference in differences and self-controlled) that control
for many unmeasured confounders, either by stratifying on subject (controlling for individual level fixed or
slowly varying covariates) or by stratifying on neighborhood (controlling for fixed and slowly varying
neighborhood level covariates), while continuing to control for measured covariates. For acute effects of
exposures, we will use instrumental variables to adjust for unmeasured confounding. We will access large,
ready-to-use datasets we have compiled, including national Medicare and Medicaid mortality and admissions,
and state-level geocoded death certificate data. We will use highly accurate national models we have
developed for daily pollution on a 1km grid, and increase resolution to 500 m. We will use a new mixture
model, fast Bayesian Kernel Machine Regression (BKMR), to address pollution and temperature mixtures,
identify interactions and nonlinearities, and identify which exposures are most important (including which
particle components) for a given health endpoint. We will use state of the art measurement error correction
approaches (SIMEX) to identify biases in the concentration-response relationship due to exposure error. We
will supplement the BKMR approach with analyses restricted to observations below current standards, and
spline methods with propensity scores to determine whether causal effects continue below current standards.
全球疾病负担估计,环境空气污染每年造成400多万人死亡。
然而,美国、欧盟、印度和中国的监管机构一直不愿收紧标准,这可能会导致
很贵。这些成本和流行病学研究的观察性质表明,
现行标准对公众健康的保护是这种不情愿的主要原因。到目前为止,
颗粒物成分没有单独的标准,健康影响评估也很少
由于缺乏亚组特定浓度响应函数,因此检查环境公平性。
此外,关于温度对死亡率和发病率的影响的研究集中在与以下因素相关的风险上:
短期接触,而不是长期影响,可能更大。我们建议通过以下方式弥补这些差距:
使用国家数据(美国医疗保险和医疗补助数据,以及来自多个州的所有年龄死亡证明数据
地理编码为人口普查区块组)的死亡率和住院率;使用因果建模技术
通过设计对忽略的混杂因素具有鲁棒性;将环境混合物的方法扩展到大数据设置
并使用它们来评估暴露的非线性和交互作用;使用最先进的模型
估计18年内美国本土1 km网格上的每日空气污染和温度暴露;
使用最先进的方法来估计邻近美国的暴露误差,使用限制和样条
解决低剂量效应的方法,以及开发和使用最先进的测量误差校正方法
在估计这些风险时考虑暴露误差的方法。
具体来说,我们将使用准实验设计(差异中的差异和自我控制),
对于许多未测量的混杂因素,通过对受试者分层(控制个体水平固定或
缓慢变化的协变量)或通过在邻域上分层(控制固定和缓慢变化的协变量
邻域水平协变量),同时继续控制测量的协变量。对于急性影响,
暴露,我们将使用工具变量来调整未测量的混杂因素。我们将获得大量,
我们编制的现成数据集,包括国家医疗保险和医疗补助死亡率和入院率,
和州一级的地理编码死亡证明数据我们将使用高度精确的国家模型,
针对1 km网格上的每日污染而开发,并将分辨率提高到500 m。我们将使用一种新的混合物
模型,快速贝叶斯核机器回归(BKMR),以解决污染和温度的混合,
识别相互作用和非线性,并识别哪些风险最重要(包括哪些风险)
粒子组件)。我们将使用最先进的测量误差校正
方法(SIMEX),以确定由于暴露误差导致的浓度-反应关系偏倚。我们
将对BKMR方法进行补充,分析仅限于低于当前标准的观测,
带有倾向分数的样条方法来确定因果效应是否继续低于当前标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joel D Schwartz其他文献
Joel D Schwartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joel D Schwartz', 18)}}的其他基金
Identifying low dose measurement error corrected effects of multiple pollutants using causal modeling
使用因果模型识别多种污染物的低剂量测量误差校正效应
- 批准号:
10634894 - 财政年份:2021
- 资助金额:
$ 34.3万 - 项目类别:
Identifying low dose measurement error corrected effects of multiple pollutants using causal modeling
使用因果模型识别多种污染物的低剂量测量误差校正效应
- 批准号:
10524732 - 财政年份:2021
- 资助金额:
$ 34.3万 - 项目类别:
Identifying low dose measurement error corrected effects of multiple pollutants using causal modeling
使用因果模型识别多种污染物的低剂量测量误差校正效应
- 批准号:
10092293 - 财政年份:2021
- 资助金额:
$ 34.3万 - 项目类别:
Air Particulate, Metals, and Cognitive Performance in an Aging Cohort- Roles of Circulating Extracellular Vesicles and Non-coding RNAs
空气颗粒物、金属和衰老人群的认知表现——循环细胞外囊泡和非编码 RNA 的作用
- 批准号:
10226996 - 财政年份:2017
- 资助金额:
$ 34.3万 - 项目类别:
Air Particulate, Metals, and Cognitive Performance in an Aging Cohort- Roles of Circulating Extracellular Vesicles and Non-coding RNAs
空气颗粒物、金属和衰老人群的认知表现——循环细胞外囊泡和非编码 RNA 的作用
- 批准号:
9981740 - 财政年份:2017
- 资助金额:
$ 34.3万 - 项目类别:
The Physiologic Response to Weather Changes and Extremes in an Elderly Cohort
老年人对天气变化和极端事件的生理反应
- 批准号:
8325030 - 财政年份:2011
- 资助金额:
$ 34.3万 - 项目类别:
Individual& community factors conveying vulnerability to weather extremes
个人
- 批准号:
8323348 - 财政年份:2011
- 资助金额:
$ 34.3万 - 项目类别:
The Physiologic Response to Weather Changes and Extremes in an Elderly Cohort
老年人对天气变化和极端事件的生理反应
- 批准号:
8152450 - 财政年份:2011
- 资助金额:
$ 34.3万 - 项目类别:
Cardiovascular Effects of Particles:The Role of Oxidative Stress and Metal Pathw
颗粒对心血管的影响:氧化应激和金属路径的作用
- 批准号:
7544952 - 财政年份:2008
- 资助金额:
$ 34.3万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Research Grant