Neuroimaging Markers for Predicting Outcome of Brain Tumor Surgery
用于预测脑肿瘤手术结果的神经影像标记物
基本信息
- 批准号:10334985
- 负责人:
- 金额:$ 24.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:AnatomyAreaArtificial IntelligenceBrainBrain NeoplasmsBrain imagingBrain regionCenters of Research ExcellenceClinicalClinical MarkersComb animal structureComputer softwareCustomDangerousnessDataDecision MakingDiffusion Magnetic Resonance ImagingExcisionFrightFunctional Magnetic Resonance ImagingGliomaGoalsHumanImageImaging technologyIntelligenceInvadedKnowledgeLanguageLesionLongitudinal StudiesLongterm Follow-upMapsMedical ImagingMedical centerModalityMotorMultimodal ImagingNeocortexNeurologicNeurologic DeficitNeuronal PlasticityOklahomaOperative Surgical ProceduresOutcomeOutcomes ResearchPatientsPerformancePostoperative PeriodProbabilityProgression-Free SurvivalsRecordsRecoveryRecovery of FunctionResearchResearch Project GrantsResearch SupportResectedRestRiskSolidSpeechStructureSurvival RateTestingTimeTrainingTranscranial magnetic stimulationUnited States National Institutes of HealthVisitbasebrain tissuecancer imagingdesignfollow-upfunctional outcomesgraphical user interfaceimaging biomarkerimaging modalityimprovedindividual patientinnovationmachine learning algorithmmachine learning modelmachine learning predictionmultimodal neuroimagingmultimodalityneuroimagingneuroimaging markerneurological recoveryneurosurgerynovelnovel strategiesoutcome predictionpatient prognosispatient safetypostoperative recoverypredict clinical outcomepredictive modelingquantitative imagingsuccesssupport toolssurgery outcometechnology developmenttooltranslational cancer researchtumor
项目摘要
Project 1: Neuroimaging Markers for Predicting Outcome of Brain Tumor Surgery
ABSTRACT
Surgical resection is one of the primary treatments for human gliomas, and a growing number of studies have
demonstrated the benefits of maximal safe resection for patient survival. However, the decision of surgical
resection of tumor-infiltrated brain tissue is often difficult given the risk of inducing neurological deficits. Tumors
with ill-defined boundaries that invade and/or infiltrate eloquent areas are often incompletely resected or deemed
inoperable for fear of conferring a debilitating deficit. Nonetheless, it is increasingly acknowledged that the
functional anatomy of the human neocortex is plastic. Dramatic reorganization of functional brain regions, such
as language cortices, have been seen in patients with infiltrating tumors such as gliomas, suggesting such
patients with tumors invading functional brain areas may in fact be surgical candidates. Because it has been
demonstrated that progression free survival (PFS) and overall survival (OS) of patients correlate with extent of
resection in surgery, patients may benefit from a more aggressive surgical strategy that accounts for the
information of functional recovery after surgery, i.e. neural plasticity. The focus of this research project is to
develop an intelligent and multimodal strategy for identifying plasticity based on images of brain connectivity that
relates to the neurological deficits after surgery in patients with focal brain gliomas involving motor and/or
language regions. Three imaging modalities including resting-state functional magnetic resonance imaging,
diffusion tensor imaging and navigated transcranial magnetic stimulation (nTMS) will be used and integrated to
identify new imaging markers. The project has three Specific Aims. In patients following surgery for
motor/speech area gliomas, we will identify plasticity metrics based on multimodal connectivity mapping and
determine the relationship between plasticity metrics and neurological deficits (Aim 1) and determine whether
baseline connectivity maps and extent of resection can be used to predict plasticity (Aim 2). In addition, we will
develop an intelligent, machine learning based model that predicts the probability of long-term deficits and overall
survival (Aim 3). The success of this project can demonstrate feasibility of developing a novel multimodal-based
quantitative image marker to predict clinical outcome of brain tumor surgery and acquire the solid preliminary
data to support the research project leader (RPL) to apply for a more comprehensive NIH R01 project that aims
to further optimize and validate the new multimodality imaging technology and prediction model. The long-term
outcomes of the research effort will lead to a comprehensive understanding of neural plasticity after surgery
and develop new quantitative neuroimaging clinical markers based on the machine learning models to assist
prediction of PFS or OS of patients. Knowledge of the neural plasticity obtained from this project will serve to
leverage the plasticity into surgery planning, which we expect will improve overall survival of patients by
increasing the extent of resection, without compromising patient safety or long-term functional outcomes.
项目1:预测脑肿瘤手术结果的神经影像学标志物
摘要
手术切除是人类胶质瘤的主要治疗方法之一,越来越多的研究表明,
证明了最大安全切除对患者生存的益处。然而,外科手术的决定
考虑到诱发神经缺陷的风险,切除肿瘤浸润的脑组织通常是困难的。肿瘤
边界不清,侵入和/或浸润功能区的肿瘤通常不能完全切除或视为
因为害怕造成虚弱的缺陷而不能手术。然而,人们越来越认识到,
人类大脑皮层的功能解剖学是可塑的。大脑功能区域的戏剧性重组,例如
在神经胶质瘤等浸润性肿瘤患者中发现了语言皮层,这表明
肿瘤侵入功能性脑区的患者实际上可能是手术候选者。因为它已被
研究表明,患者的无进展生存期(PFS)和总生存期(OS)与疾病进展程度相关。
手术切除,患者可能受益于更积极的手术策略,
手术后功能恢复的信息,即神经可塑性。该研究项目的重点是
开发一种智能和多模式的策略,用于基于大脑连接的图像来识别可塑性,
与涉及运动和/或神经功能障碍的局灶性脑胶质瘤患者手术后的神经功能缺损相关
语言区域。三种成像模式,包括静息态功能磁共振成像,
将使用并整合弥散张量成像和导航经颅磁刺激(nTMS),
识别新的成像标记。该项目有三个具体目标。在手术后的患者中,
运动/语言区胶质瘤,我们将根据多模态连接映射确定可塑性指标,
确定可塑性指标和神经功能缺损之间的关系(目标1),并确定是否
基线连接图和切除范围可用于预测可塑性(目标2)。此外,我们将
开发一个智能的、基于机器学习的模型,预测长期赤字的概率,
生存(目标3)。该项目的成功可以证明开发一种新型的多模态基
定量图像标记物用于预测脑肿瘤手术的临床结果并获得可靠的初步结果
数据支持研究项目负责人(RPL)申请一个更全面的NIH R 01项目,
进一步优化和验证新的多模态成像技术和预测模型。长期
这项研究的成果将使人们对手术后的神经可塑性有一个全面的了解
并基于机器学习模型开发新的定量神经成像临床标记物,
预测患者的PFS或OS。从这个项目中获得的神经可塑性知识将有助于
将可塑性用于手术计划,我们预计这将提高患者的总体生存率,
增加切除范围,而不影响患者安全或长期功能结局。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Han Yuan其他文献
Han Yuan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Han Yuan', 18)}}的其他基金
Neuroimaging Markers for Predicting Outcome of Brain Tumor Surgery
用于预测脑肿瘤手术结果的神经影像标记物
- 批准号:
10573283 - 财政年份:2022
- 资助金额:
$ 24.22万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
Onboarding Rural Area Mathematics and Physical Science Scholars
农村地区数学和物理科学学者的入职
- 批准号:
2322614 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant
Point-scanning confocal with area detector
点扫描共焦与区域检测器
- 批准号:
534092360 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Major Research Instrumentation
TRACK-UK: Synthesized Census and Small Area Statistics for Transport and Energy
TRACK-UK:交通和能源综合人口普查和小区域统计
- 批准号:
ES/Z50290X/1 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Research Grant
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
- 批准号:
NE/Y003365/1 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Research Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326714 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant
Collaborative Research: Scalable Manufacturing of Large-Area Thin Films of Metal-Organic Frameworks for Separations Applications
合作研究:用于分离应用的大面积金属有机框架薄膜的可扩展制造
- 批准号:
2326713 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant
Unlicensed Low-Power Wide Area Networks for Location-based Services
用于基于位置的服务的免许可低功耗广域网
- 批准号:
24K20765 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427233 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427232 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
- 批准号:
2427231 - 财政年份:2024
- 资助金额:
$ 24.22万 - 项目类别:
Standard Grant