Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer

多参数灌注 MRI 用于脑癌治疗反应评估

基本信息

项目摘要

The long-term goal of this program is to improve patient care by optimizing and validating quantitative magnetic resonance imaging methods for the early prediction of brain cancer response to therapy. Currently, contrast-enhanced MRI (CE-MRI) represents the standard for guiding almost all aspects of brain tumor clinical management, including surgical biopsy/resection, radiation treatment planning, and post-treatment surveillance for response assessment. Unfortunately, CE-MRI’s accuracy remains limited, which creates significant clinical challenges. Thus, clinical decisions often require surgical biopsy for definitive diagnosis, which increases medical costs, patient morbidity/mortality, and resource utilization. To overcome the limitations of CE-MRI, dynamic susceptibility contrast (DSC) MRI and dynamic contrast enhanced (DCE) MRI are increasingly used to evaluate tumor perfusion and permeability. Studies have shown that DSC/DCE parameters correlate with tumor grade, can predict the likelihood of tumor progression after therapy, and differentiate treatment related effects versus tumor progression. However, the widespread clinical adoption and incorporation of DSC-MRI into multi-site clinical trials has been hindered due to variable acquisition methods, contrast agent dosing schemes and analysis protocols, which to date, have yet to be standardized and automated for clinical use. These issues are known to affect the repeatability and interpretation of DSC-MRI metrics. Spin and gradient echo (SAGE) DSC-MRI sequences enable the use of lower doses of Gd-based contrast agents, require less scan time, are less sensitive to acquisition parameters, are methodologically more reproducible, yield more accurate perfusion parameters, provide simultaneous measures of DCE-MRI, vessel size and vessel architectural imaging data, oxygen delivery and novel metrics highly sensitive to tumor cellular characteristics. Accordingly, SAGE methods enable the interrogation of unique and complementary readouts on tumor microstructure and function that correlate with clinical outcomes and can identify patients responding to therapy. Before clinical trials can benefit from SAGE based DSC-MRI the acquisition and analysis protocols need to be optimized, automated and standardized. Thus, we propose to: 1) implement multi-vendor, SAGE- DSC-MRI protocols, 2) establish automated and open source algorithms for quality assurance and analysis, 3) partner with Imaging Biometrics to develop a commercially integrated, vendor neutral image analysis platform for analyzing SAGE DSC-MRI data and 4) validate SAGE DSC-MRI tools for predicting glioma response to bevacizumab therapy. Impact on Healthcare: We will provide the neuro-oncology community with validated, quantitative image acquisition and analysis methods for identifying early therapeutic response that are appropriate for multi-site clinical trials of conventional and targeted brain tumor therapies, thereby enabling more rapid drug discovery and improved individualized care for patients.
该计划的长期目标是通过优化和验证数量来改善患者护理 磁共振成像方法用于早期预测脑癌的治疗反应。目前, 增强磁共振成像(CE-MRI)代表着指导脑肿瘤临床几乎所有方面的标准 管理,包括外科活组织检查/切除、放射治疗计划和治疗后监测 用于响应评估。不幸的是,CE-MRI的准确性仍然有限,这在临床上产生了重要的影响 挑战。因此,临床决策通常需要手术活检以确定诊断,这增加了 医疗成本、患者发病率/死亡率和资源利用率。为了克服CE-MRI的局限性, 动态磁化率对比(DSC)MRI和动态对比增强(DCE)MRI的使用越来越多 评价肿瘤的血流灌注和通透性。研究表明,DSC/DCE参数与 肿瘤分级,可以预测治疗后肿瘤进展的可能性,并区分相关的治疗 对肿瘤进展的影响。然而,DSC-MRI的广泛临床采用和纳入 由于采集方法、造影剂剂量的变化,进入多个地点的临床试验受到阻碍 方案和分析方案,到目前为止,还没有标准化和自动化的临床使用。 已知这些问题会影响DSC-MRI指标的可重复性和解释。自旋和梯度 ECHO(SAGE)DSC-MRI序列能够使用较低剂量的基于Gd的造影剂,需要的时间更少 扫描时间对采集参数不那么敏感,在方法上更具重复性,产量更高 精确的灌注参数,提供DCE-MRI、血管大小和血管的同步测量 架构成像数据、氧气输送和对肿瘤细胞特性高度敏感的新指标。 因此,SAGE方法使得能够询问关于肿瘤的唯一和互补读数 与临床结果相关的微结构和功能,并可以识别患者对 心理治疗。在临床试验可以受益于基于SAGE的DSC-MRI之前,采集和分析协议 需要优化、自动化和标准化。因此,我们建议:1)实施多供应商、SAGE- DSC-MRI协议,2)建立用于质量保证和分析的自动化和开源算法,3) 与成像生物识别公司合作,开发商业集成的、供应商中立的图像分析平台 用于分析SAGE DSC-MRI数据和4)验证SAGE DSC-MRI工具预测胶质瘤对 贝伐单抗疗法。对医疗保健的影响:我们将为神经肿瘤学社区提供经过验证的 用于识别早期治疗反应的定量图像获取和分析方法 适用于常规和靶向脑肿瘤治疗的多点临床试验,从而使 更快的药物发现和改善对患者的个性化护理。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashley M Stokes其他文献

Ashley M Stokes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashley M Stokes', 18)}}的其他基金

Multi-scale functional connectivity in preclinical models of Parkinson's disease
帕金森病临床前模型的多尺度功能连接
  • 批准号:
    10543831
  • 财政年份:
    2022
  • 资助金额:
    $ 34.77万
  • 项目类别:
Investigating the role of cerebral perfusion in demyelination and repair in multiple sclerosis with MRI
用 MRI 研究脑灌注在多发性硬化症脱髓鞘和修复中的作用
  • 批准号:
    10453345
  • 财政年份:
    2022
  • 资助金额:
    $ 34.77万
  • 项目类别:
Investigating the role of cerebral perfusion in demyelination and repair in multiple sclerosis with MRI
用 MRI 研究脑灌注在多发性硬化症脱髓鞘和修复中的作用
  • 批准号:
    10623344
  • 财政年份:
    2022
  • 资助金额:
    $ 34.77万
  • 项目类别:
Multi-scale functional connectivity in preclinical models of Parkinson's disease
帕金森病临床前模型的多尺度功能连接
  • 批准号:
    10334884
  • 财政年份:
    2022
  • 资助金额:
    $ 34.77万
  • 项目类别:

相似海外基金

How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
  • 批准号:
    2315783
  • 财政年份:
    2023
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
  • 批准号:
    2719534
  • 财政年份:
    2022
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633211
  • 财政年份:
    2020
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
  • 批准号:
    20K01113
  • 财政年份:
    2020
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2436895
  • 财政年份:
    2020
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
  • 批准号:
    2633207
  • 财政年份:
    2020
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
  • 批准号:
    426559561
  • 财政年份:
    2019
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
  • 批准号:
    2236701
  • 财政年份:
    2019
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
  • 批准号:
    19K01745
  • 财政年份:
    2019
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
  • 批准号:
    415543446
  • 财政年份:
    2019
  • 资助金额:
    $ 34.77万
  • 项目类别:
    Research Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了