Synergistic toxicity of reactive oxygen species

活性氧的协同毒性

基本信息

项目摘要

Hydrogen peroxide is a bio-specific toxin, inert with common organic or inorganic molecules, but in sufficient concentrations killing any type of cells almost on contact, using cellular iron to produce highly-reactive oxidizing species (Fenton's reaction). Chromosomal DNA is the main cellular target of HP poisoning, although the nature of lethal chromosomal damage is still unknown. Even more confusingly, HP turns out to be a surprising choice for a bio- weapon, as the killing concentrations are 1,000-fold higher than the physiological ones, while accumulation of HP in a particular cellular compartment is problematic, because its small size and uncharged nature facilitates diffusion through membranes. Yet, our immune cells somehow use these much lower HP concentrations to efficiently kill invading microbes, by unclear mechanisms. Remarkably, HP toxicity is synergized by other simple molecules, like nitric oxide (NO) or cyanide (CN). We hypothesize that our immune cells use otherwise insufficient HP concentrations to kill bacteria by accumulating potentiator molecules (for example, NO) in the compartments where high [HP] does not accumulate. However, the metabolic mechanisms behind potentiated HP toxicity, thought to elevate the intracellular free iron, are inconsistent with the newest results, while the mechanisms of irreparable chromosomal damage remain mostly unclear. Our recent studies of HP+CN co-toxicity uncovered new aspects of the phenomenon, like iron recruitment from intracellular depots directly to DNA, or catastrophic chromosome fragmentation, which is responsible for the cell killing. We propose to study HP+NO co-toxicity with three specific aims: 1) the nature of this synergistic toxicity and the targets of NO action; 2) the DNA mechanisms behind the catastrophic chromosomal fragmentation; 3) hunger shock as a metabolic potentiator of HP toxicity. The major difference of our approach from the previous work is the emphasis on DNA and chromosome damage, on the significantly expanded genetic scope and on testing specific ways to enhance Fenton. Our long-term goals in this project are to understand the mechanisms behind the catastrophic chromosome fragmentation on the one hand, and those responsible for potentiation of HP toxicity on the other.
过氧化氢是一种生物特异性毒素,与常见的有机或无机分子呈惰性, 但在足够的浓度下,几乎在接触时杀死任何类型的细胞, 以产生高活性氧化物质(芬顿反应)。染色体DNA是 HP中毒的主要细胞目标,尽管致命的染色体损伤的性质是 仍然未知。更令人困惑的是,惠普竟然是一个令人惊讶的选择生物- 武器,由于杀伤浓度比生理浓度高1,000倍, 虽然HP在特定细胞区室中的积累是有问题的, 小尺寸和不带电的性质有利于通过膜的扩散。然而,我们的免疫系统 细胞以某种方式使用这些低得多的HP浓度来有效地杀死入侵的微生物, 不明确的机制。值得注意的是,HP毒性与其他简单分子协同作用,如 一氧化氮(NO)或氰化物(CN)。我们假设我们的免疫细胞使用的是 HP浓度不足以通过积聚增效剂分子来杀死细菌(对于 例如,NO)在高[HP]不累积的隔室中。但 HP毒性增强背后的代谢机制,被认为可以提高细胞内 游离铁,是不符合最新的结果,而不可挽回的机制, 染色体损伤仍不清楚。我们最近对HP+CN联合毒性的研究 发现了这一现象的新方面,如铁从细胞内库招募 直接作用于DNA,或者是灾难性的染色体断裂, 杀人我们建议研究HP+NO的联合毒性,有三个具体目标:1)这种毒性的性质 协同毒性和NO作用的靶点; 2) 灾难性的染色体断裂; 3)饥饿休克作为HP的代谢增强剂 毒性我们的方法与以前工作的主要区别是强调 DNA和染色体损伤,对遗传范围的显著扩大和对检测 增强芬顿能力的具体方法我们在这个项目中的长期目标是了解 一方面是灾难性的染色体断裂背后的机制, 另一方面负责HP毒性的增强。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Kuzminov其他文献

Andrei Kuzminov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Kuzminov', 18)}}的其他基金

Synergistic toxicity of reactive oxygen species
活性氧的协同毒性
  • 批准号:
    10552702
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
Synergistic toxicity of reactive oxygen species
活性氧的协同毒性
  • 批准号:
    10116427
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
Base Analog Toxicity and Detoxification
基础模拟毒性和解毒
  • 批准号:
    7921262
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
Base Analog Toxicity and Detoxification
基础模拟毒性和解毒
  • 批准号:
    8068910
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Base Analog Toxicity and Detoxification
基础模拟毒性和解毒
  • 批准号:
    7199204
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Base Analog Toxicity and Detoxification
基础模拟毒性和解毒
  • 批准号:
    7845737
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Chromosomal death due to misincorporation of wrong material into DNA
由于错误的物质掺入 DNA 导致染色体死亡
  • 批准号:
    10321611
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Chromosomal consequences of DNA precursor pools imbalances and contamination
DNA 前体库失衡和污染的染色体后果
  • 批准号:
    8890840
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Chromosomal consequences of DNA precursor pools imbalances and contamination
DNA 前体库失衡和污染的染色体后果
  • 批准号:
    9088460
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Base Analog Toxicity and Detoxification
基础模拟毒性和解毒
  • 批准号:
    7393262
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了