Synergistic toxicity of reactive oxygen species

活性氧的协同毒性

基本信息

项目摘要

Hydrogen peroxide is a bio-specific toxin, inert with common organic or inorganic molecules, but in sufficient concentrations killing any type of cells almost on contact, using cellular iron to produce highly-reactive oxidizing species (Fenton's reaction). Chromosomal DNA is the main cellular target of HP poisoning, although the nature of lethal chromosomal damage is still unknown. Even more confusingly, HP turns out to be a surprising choice for a bio- weapon, as the killing concentrations are 1,000-fold higher than the physiological ones, while accumulation of HP in a particular cellular compartment is problematic, because its small size and uncharged nature facilitates diffusion through membranes. Yet, our immune cells somehow use these much lower HP concentrations to efficiently kill invading microbes, by unclear mechanisms. Remarkably, HP toxicity is synergized by other simple molecules, like nitric oxide (NO) or cyanide (CN). We hypothesize that our immune cells use otherwise insufficient HP concentrations to kill bacteria by accumulating potentiator molecules (for example, NO) in the compartments where high [HP] does not accumulate. However, the metabolic mechanisms behind potentiated HP toxicity, thought to elevate the intracellular free iron, are inconsistent with the newest results, while the mechanisms of irreparable chromosomal damage remain mostly unclear. Our recent studies of HP+CN co-toxicity uncovered new aspects of the phenomenon, like iron recruitment from intracellular depots directly to DNA, or catastrophic chromosome fragmentation, which is responsible for the cell killing. We propose to study HP+NO co-toxicity with three specific aims: 1) the nature of this synergistic toxicity and the targets of NO action; 2) the DNA mechanisms behind the catastrophic chromosomal fragmentation; 3) hunger shock as a metabolic potentiator of HP toxicity. The major difference of our approach from the previous work is the emphasis on DNA and chromosome damage, on the significantly expanded genetic scope and on testing specific ways to enhance Fenton. Our long-term goals in this project are to understand the mechanisms behind the catastrophic chromosome fragmentation on the one hand, and those responsible for potentiation of HP toxicity on the other.
过氧化氢是一种生物特有的毒素,与常见的有机或无机分子具有惰性, 但在足够的浓度下,使用细胞铁几乎可以杀死接触到的任何类型的细胞 产生高活性的氧化物种(芬顿反应)。染色体DNA是 HP中毒的主要细胞靶点,尽管致命的染色体损伤的本质是 仍然未知。更令人困惑的是,惠普被证明是一个令人惊讶的选择 武器,因为杀戮浓度是生理浓度的1000倍, 虽然幽门螺杆菌在特定细胞隔间的积累是有问题的,因为它的 小尺寸和不带电荷的性质有利于通过膜扩散。然而,我们的免疫力 细胞不知何故利用这些低得多的幽门螺杆菌浓度来有效地杀死入侵的微生物, 不清楚的机制。值得注意的是,幽门螺杆菌的毒性与其他简单分子协同作用,如 一氧化氮(NO)或氰化物(CN)。我们假设我们的免疫细胞使用不同的 HP浓度不足以通过积累增强剂分子来杀灭细菌(用于 例如,否)在不累积高[HP]的隔室中。然而, 增强幽门螺杆菌毒性背后的代谢机制,被认为是提高细胞内 游离铁,与最新的结果不一致,而机理是不可修复的 染色体受损的情况大多仍不清楚。我们最近对HP+CN共毒性的研究 发现了这一现象的新方面,比如从细胞内仓库中重新招募铁 直接导致DNA,或灾难性的染色体断裂,这是细胞的责任 杀戮。我们建议研究HP+NO的联合毒性,具体有三个目标:1)这种毒性的性质 协同毒性与NO作用靶点;2)DNA作用机制 灾难性的染色体碎裂;3)饥饿休克是幽门螺杆菌的代谢增强剂 毒性。我们的方法与以前工作的主要不同之处在于强调 DNA和染色体损伤,关于显著扩大的遗传范围和测试 增强芬顿的具体方法。我们在这个项目中的长期目标是了解 一方面,灾难性的染色体断裂背后的机制,以及那些 负责增强幽门螺杆菌的毒性。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Robust linear DNA degradation supports replication-initiation-defective mutants in Escherichia coli.
  • DOI:
    10.1093/g3journal/jkac228
  • 发表时间:
    2022-11-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Catastrophic chromosome fragmentation probes the nucleoid structure and dynamics in Escherichia coli.
  • DOI:
    10.1093/nar/gkac865
  • 发表时间:
    2022-10-28
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Mahaseth, Tulip;Kuzminov, Andrei
  • 通讯作者:
    Kuzminov, Andrei
Nitric oxide precipitates catastrophic chromosome fragmentation by bolstering both hydrogen peroxide and Fe(II) Fenton reactants in E. coli.
  • DOI:
    10.1016/j.jbc.2022.101825
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Agashe, Pooja;Kuzminov, Andrei
  • 通讯作者:
    Kuzminov, Andrei
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Kuzminov其他文献

Andrei Kuzminov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Kuzminov', 18)}}的其他基金

Synergistic toxicity of reactive oxygen species
活性氧的协同毒性
  • 批准号:
    10116427
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
Synergistic toxicity of reactive oxygen species
活性氧的协同毒性
  • 批准号:
    10335202
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
Base Analog Toxicity and Detoxification
基础模拟毒性和解毒
  • 批准号:
    7921262
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
Base Analog Toxicity and Detoxification
基础模拟毒性和解毒
  • 批准号:
    8068910
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Base Analog Toxicity and Detoxification
基础模拟毒性和解毒
  • 批准号:
    7199204
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Base Analog Toxicity and Detoxification
基础模拟毒性和解毒
  • 批准号:
    7845737
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Chromosomal death due to misincorporation of wrong material into DNA
由于错误的物质掺入 DNA 导致染色体死亡
  • 批准号:
    10321611
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Chromosomal consequences of DNA precursor pools imbalances and contamination
DNA 前体库失衡和污染的染色体后果
  • 批准号:
    9088460
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Chromosomal consequences of DNA precursor pools imbalances and contamination
DNA 前体库失衡和污染的染色体后果
  • 批准号:
    8890840
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
Base Analog Toxicity and Detoxification
基础模拟毒性和解毒
  • 批准号:
    7393262
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:

相似国自然基金

Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
  • 批准号:
    81971557
  • 批准年份:
    2019
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
  • 批准号:
    51678163
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
  • 批准号:
    EP/Y029542/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
Evaluation and application of binding ability between mycotoxin and lactic acid bacteria cell wall components using kinetic analysis.
动力学分析评价霉菌毒素与乳酸菌细胞壁成分结合能力及应用
  • 批准号:
    22K05515
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural and functional studies of iron uptake ATP-binding cassette transporters (ABC transporters) in Gram-negative bacteria
革兰氏阴性菌中铁摄取 ATP 结合盒转运蛋白(ABC 转运蛋白)的结构和功能研究
  • 批准号:
    20K22561
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Investigation of virulence mechanism of Gram-positive bacteria regulated by various RNA binding proteins
不同RNA结合蛋白调控革兰氏阳性菌毒力机制的研究
  • 批准号:
    19H03466
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Xenophagy recognizes bacteria through carbohydrate-binding ubiquitin ligase complex
异体吞噬通过碳水化合物结合泛素连接酶复合物识别细菌
  • 批准号:
    18K07109
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on binding mechanism of lactic acid bacteria to the host via anchorless proteins
乳酸菌通过锚定蛋白与宿主结合机制的研究
  • 批准号:
    18K05405
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding DNA-binding by type IV pilins: key event during transformation in naturally competent bacteria
了解 IV 型菌毛蛋白的 DNA 结合:自然感受态细菌转化过程中的关键事件
  • 批准号:
    MR/P022197/1
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Development of novel caries suppression method targeting polymer binding domain of plaque constituting bacteria
开发针对牙菌斑构成细菌的聚合物结合域的新型防龋方法
  • 批准号:
    15K20591
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The differing biological fates of DNA minor groove-binding (MGB) antibiotics in Gram-negative and Gram-Positive bacteria.
DNA 小沟结合 (MGB) 抗生素在革兰氏阴性和革兰氏阳性细菌中的不同生物学命运。
  • 批准号:
    BB/K019600/1
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Domoic acid-binding substance found in bacteria isolated from causative diatom of domoic acid
从软骨藻酸致病硅藻中分离出的细菌中发现软骨藻酸结合物质
  • 批准号:
    23658175
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了