Optimizing Recovery prediction after Cardiac Arrest (ORCA)
优化心脏骤停 (ORCA) 后的恢复预测
基本信息
- 批准号:10337430
- 负责人:
- 金额:$ 65.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressAnoxic EncephalopathyBenchmarkingBrainBrain InjuriesCardiopulmonary ResuscitationCaringCause of DeathClinicalClinical DataCollectionComaComplexCritical CareDataDatabasesDecision Support SystemsDetectionElectroencephalographyEnsureEventEvolutionFailureFamilyFutureHeart ArrestHourHumanImageInformation SciencesInjuryKnowledgeLabelLaboratoriesMachine LearningMethodsModalityModelingModern MedicineMonitorNeurologicNeurologic ExaminationOutcomeOutputPatient CarePatient-Focused OutcomesPatientsPatternPerformancePharmaceutical PreparationsPhysiciansPhysiologicalPhysiologyProcessPrognosisProviderRecommendationRecoveryResolutionResourcesSamplingSeriesSpecificitySpeedStatistical ModelsStructureSupervisionSurvival AnalysisSurvivorsSystemTemperatureTest ResultTestingTimeTrainingUncertaintyUnited StatesValidationWithdrawalWorkanalytical toolbasecostdata ecosystemdeep learningdemographicsdisabilityevidence based guidelinesimprovedinclusion criteriainnovationinsightlife-sustaining therapyneurological recoverynovelnovel strategiesoutcome predictionpatient populationpredictive toolsprognosticprognosticationprospectiveprospective testrandom forestrelating to nervous systemrisk minimizationtool
项目摘要
Abstract
Predicting recovery from anoxic brain injury and coma after cardiac arrest is challenging. Although patients
resuscitated from cardiac arrest are intensively monitored in critical care units, clinicians use only a tiny subset
of available data to predict potential for recovery, making neurological prognostication both slow and imprecise.
This is a specific example of a ubiquitous problem in modern medicine: routine clinical monitoring generates
vast quantities of rich information, but tools to transform these data to useful knowledge are lacking.
This project will leverage expertise in post-arrest critical care, information science, statistical modeling and
machine learning to make a system that rapidly delivers actionable prognostic knowledge. We have cleaned,
organized and aggregated a large, highly multivariate time series database with physiological and clinical
information with over 170,000 hours of quantitative electroencephalographic (EEG) features for >1,850 post-
arrest patients. We will refine and optimize analytical tools that predict recovery in this patient population more
rapidly and accurately than clinical experts. We will use innovative approaches to minimize risk of bias during
training of models introduced by outcome labels created by fallible human providers.
In Aim 1 of this proposal, we will use novel approaches to create informative and interpretable features from
heterogeneous clinical data including EEG waveforms, vital signs, medications and laboratory test results. We
will use deep learning to identify interpretable and parsimonious sets of these features that predict outcome.
We will train, test and compare the performance of multiple analytical tools. In Aim 2, we will prospectively
compare the best performing model(s) against a panel of expert clinicians. Models that confidently identify
patients with near-zero prospect of recovery with greater sensitivity or faster than expert clinicians can serve as
decision support systems. Improving the speed and accuracy of post-arrest prognostication will save lives,
allow appropriate resources to be directed to patients who are likely to benefit, avoid long and difficult care for
patients who cannot recover, and spare families the agony of uncertainty.
抽象的
预测心脏骤停后缺氧性脑损伤和昏迷的康复是具有挑战性的。虽然病人
从心脏骤停中复苏的人在重症监护单元中进行了深入监控,临床医生仅使用一个小子集
可用数据以预测恢复的潜力,使神经系统预后既缓慢又不精确。
这是现代医学中普遍存在问题的特定例子:常规临床监测会产生
大量丰富的信息,但是缺乏将这些数据转换为有用知识的工具。
该项目将利用逮捕后重症监护,信息科学,统计建模和
机器学习以制造一个可以快速提供可行的预后知识的系统。我们已经打扫过
有组织和汇总的高度多元时间序列数据库,具有生理和临床
超过170,000小时的定量脑电图(EEG)特征的信息> 1,850
逮捕患者。我们将完善和优化分析工具,以预测该患者人群的恢复
比临床专家快速,准确。我们将使用创新的方法来最大程度地降低偏见的风险
由易犯错的人类提供者创建的结果标签引入的模型培训。
在本提案的目标1中,我们将使用新颖的方法来创建信息
异质临床数据,包括EEG波形,生命体征,药物和实验室测试结果。我们
将使用深度学习来识别这些预测结果的这些特征的可解释和简约的集合。
我们将训练,测试和比较多种分析工具的性能。在AIM 2中,我们将前景
将最佳性能模型与专家临床医生小组进行比较。自信地识别的模型
比专家临床医生更快或更快地恢复恢复前景的患者可以作为
决策支持系统。提高预防后预后的速度和准确性将挽救生命,
允许将适当的资源引向可能受益的患者,避免长期和困难的护理
无法康复的患者,并避免家庭带来不确定性的痛苦。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Elmer其他文献
Jonathan Elmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Elmer', 18)}}的其他基金
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10842647 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
Optimizing Recovery prediction after Cardiac Arrest (ORCA)
优化心脏骤停 (ORCA) 后的恢复预测
- 批准号:
10600023 - 财政年份:2022
- 资助金额:
$ 65.39万 - 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10314042 - 财政年份:2020
- 资助金额:
$ 65.39万 - 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10526409 - 财政年份:2020
- 资助金额:
$ 65.39万 - 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10412861 - 财政年份:2020
- 资助金额:
$ 65.39万 - 项目类别:
Quantitative electroencephalography after cardiac arrest
心脏骤停后定量脑电图
- 批准号:
10197229 - 财政年份:2017
- 资助金额:
$ 65.39万 - 项目类别:
Quantitative electroencephalography after cardiac arrest
心脏骤停后定量脑电图
- 批准号:
9916825 - 财政年份:2017
- 资助金额:
$ 65.39万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimizing Recovery prediction after Cardiac Arrest (ORCA)
优化心脏骤停 (ORCA) 后的恢复预测
- 批准号:
10600023 - 财政年份:2022
- 资助金额:
$ 65.39万 - 项目类别:
PHILA-NETT: Neurological Emergencies Treatment Trials (NETT) Network Clinical Hub
PHILA-NETT:神经急症治疗试验 (NETT) 网络临床中心
- 批准号:
8536960 - 财政年份:2007
- 资助金额:
$ 65.39万 - 项目类别:
PHILA-NETT: Neurological Emergencies Treatment Trials (NETT) Network Clinical Hub
PHILA-NETT:神经急症治疗试验 (NETT) 网络临床中心
- 批准号:
8401645 - 财政年份:2007
- 资助金额:
$ 65.39万 - 项目类别:
PHILA-NETT: Neurological Emergencies Treatment Trials (NETT) Network Clinical Hub
PHILA-NETT:神经急症治疗试验 (NETT) 网络临床中心
- 批准号:
8701419 - 财政年份:2007
- 资助金额:
$ 65.39万 - 项目类别:
PHILA-NETT: Neurological Emergencies Treatment Trials (NETT) Network Clinical Hub
PHILA-NETT:神经急症治疗试验 (NETT) 网络临床中心
- 批准号:
9064879 - 财政年份:2007
- 资助金额:
$ 65.39万 - 项目类别: