Optimizing Recovery prediction after Cardiac Arrest (ORCA)
优化心脏骤停 (ORCA) 后的恢复预测
基本信息
- 批准号:10337430
- 负责人:
- 金额:$ 65.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:Academic Medical CentersAddressAnoxic EncephalopathyBenchmarkingBrainBrain InjuriesCardiopulmonary ResuscitationCaringCause of DeathClinicalClinical DataCollectionComaComplexCritical CareDataDatabasesDecision Support SystemsDetectionElectroencephalographyEnsureEventEvolutionFailureFamilyFutureHeart ArrestHourHumanImageInformation SciencesInjuryKnowledgeLabelLaboratoriesMachine LearningMethodsModalityModelingModern MedicineMonitorNeurologicNeurologic ExaminationOutcomeOutputPatient CarePatient-Focused OutcomesPatientsPatternPerformancePharmaceutical PreparationsPhysiciansPhysiologicalPhysiologyProcessPrognosisProviderRecommendationRecoveryResolutionResourcesSamplingSeriesSpecificitySpeedStatistical ModelsStructureSupervisionSurvival AnalysisSurvivorsSystemTemperatureTest ResultTestingTimeTrainingUncertaintyUnited StatesValidationWithdrawalWorkanalytical toolbasecostdata ecosystemdeep learningdemographicsdisabilityevidence based guidelinesimprovedinclusion criteriainnovationinsightlife-sustaining therapyneurological recoverynovelnovel strategiesoutcome predictionpatient populationpredictive toolsprognosticprognosticationprospectiveprospective testrandom forestrelating to nervous systemrisk minimizationtool
项目摘要
Abstract
Predicting recovery from anoxic brain injury and coma after cardiac arrest is challenging. Although patients
resuscitated from cardiac arrest are intensively monitored in critical care units, clinicians use only a tiny subset
of available data to predict potential for recovery, making neurological prognostication both slow and imprecise.
This is a specific example of a ubiquitous problem in modern medicine: routine clinical monitoring generates
vast quantities of rich information, but tools to transform these data to useful knowledge are lacking.
This project will leverage expertise in post-arrest critical care, information science, statistical modeling and
machine learning to make a system that rapidly delivers actionable prognostic knowledge. We have cleaned,
organized and aggregated a large, highly multivariate time series database with physiological and clinical
information with over 170,000 hours of quantitative electroencephalographic (EEG) features for >1,850 post-
arrest patients. We will refine and optimize analytical tools that predict recovery in this patient population more
rapidly and accurately than clinical experts. We will use innovative approaches to minimize risk of bias during
training of models introduced by outcome labels created by fallible human providers.
In Aim 1 of this proposal, we will use novel approaches to create informative and interpretable features from
heterogeneous clinical data including EEG waveforms, vital signs, medications and laboratory test results. We
will use deep learning to identify interpretable and parsimonious sets of these features that predict outcome.
We will train, test and compare the performance of multiple analytical tools. In Aim 2, we will prospectively
compare the best performing model(s) against a panel of expert clinicians. Models that confidently identify
patients with near-zero prospect of recovery with greater sensitivity or faster than expert clinicians can serve as
decision support systems. Improving the speed and accuracy of post-arrest prognostication will save lives,
allow appropriate resources to be directed to patients who are likely to benefit, avoid long and difficult care for
patients who cannot recover, and spare families the agony of uncertainty.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Elmer其他文献
Jonathan Elmer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Elmer', 18)}}的其他基金
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10842647 - 财政年份:2023
- 资助金额:
$ 65.39万 - 项目类别:
Optimizing Recovery prediction after Cardiac Arrest (ORCA)
优化心脏骤停 (ORCA) 后的恢复预测
- 批准号:
10600023 - 财政年份:2022
- 资助金额:
$ 65.39万 - 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10526409 - 财政年份:2020
- 资助金额:
$ 65.39万 - 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10314042 - 财政年份:2020
- 资助金额:
$ 65.39万 - 项目类别:
PREcision Care In Cardiac ArrEst - ICECAP (PRECICECAP)
心脏骤停的精准护理 - ICECAP (PRECICECAP)
- 批准号:
10412861 - 财政年份:2020
- 资助金额:
$ 65.39万 - 项目类别:
Quantitative electroencephalography after cardiac arrest
心脏骤停后定量脑电图
- 批准号:
10197229 - 财政年份:2017
- 资助金额:
$ 65.39万 - 项目类别:
Quantitative electroencephalography after cardiac arrest
心脏骤停后定量脑电图
- 批准号:
9916825 - 财政年份:2017
- 资助金额:
$ 65.39万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 65.39万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 65.39万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 65.39万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 65.39万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 65.39万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 65.39万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 65.39万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 65.39万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 65.39万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 65.39万 - 项目类别:
Research Grant