IgSF11 Signaling Controls Osteoclast Maturation and Pathogenic Bone Loss
IgSF11 信号传导控制破骨细胞成熟和致病性骨质流失
基本信息
- 批准号:10337682
- 负责人:
- 金额:$ 35.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2026-11-30
- 项目状态:未结题
- 来源:
- 关键词:AffectBiologicalBiological AssayCell Surface ReceptorsCellsColitisComplexCoupledDataDiseaseEnzymesFutureGenetic TranscriptionGlycolysisHomeostasisHumanImmunoglobulinsInflammationInflammatoryJAK2 geneLinkMass Spectrum AnalysisMediatingMetabolicMetabolismMindModelingModificationMolecularMusMyelogenousNatureOsteoblastsOsteoclastsOsteogenesisPathogenicityPathway interactionsPatientsPhenotypePhosphorylationPhosphotransferasesPolyubiquitinationProcessProteinsPyruvate KinaseRegulationRoleSRC geneScaffolding ProteinSignal PathwaySignal TransductionTRAF6 geneTestingTherapeuticValidationbasebonebone lossbone resorbing activitybone strengthclinically relevantdextran sulfate sodium induced colitisexperimental studyinflammatory bone lossinhibitormembermutantnovelpreventsmall moleculesrc-Family Kinases
项目摘要
Under inflammatory conditions, bone destruction can be linked to excessive activity of bone-resorbing
osteoclasts (OCs), which results not only from the differentiation of too many OCs, but also from over-
maturation of OCs. While most current bone loss treatments prevent bone loss by reducing OC numbers, it
may be better if future therapeutic strategies focus on targeting OC maturation rather than early OC
differentiation to avoid inhibiting coupled bone formation that depends on interactions between bone-forming
osteoblasts and OCs. In an effort to target maturation, we previously identified immunoglobulin superfamily
member 11 (IgSF11) as a novel cell surface receptor that regulates OC differentiation but not new bone
formation. To characterize IgSF11 signaling, we analyzed, by mass spectrometry, proteins phosphorylated
after IgSF11 activation and identified Pyruvate kinase M2 (PKM2), the enzyme that catalyzes the last step of
glycolysis, as a downstream target. This finding highlights a potentially greater than previously known
determinative role for metabolic regulation during OC differentiation and inflammatory bone loss. We therefore
propose the following specific aims: 1. Examine the role of IgSF11-PKM2 signaling in inflammatory bone loss.
We will investigate OC-expressed IgSF11 in the context of inflammatory bone loss by using an LPS-induced
model of bone loss. To test the contribution of PKM2-dependent effects, we will treat LPS-induced IgSF11-/-
mice with small molecule modulators (TEPP-46, shikonin) of PKM2. Our preliminary data suggests that TEPP-
46 activation of PKM2 reduces DSS-induced bone loss. To examine whether IgSF11 expression affects colitis-
associated bone loss, we will perform DSS-induced colitis experiments using IgSF11-deficient mice. We will
also perform DSS-induced colitis experiments using IgSF11-/- mice treated with TEPP-46 or shikonin. These
studies will be critical to establishing the intersection of IgSF11 and PKM2 contributions to clinically relevant
inflammatory bone loss. 2. Characterization of IgSF11-PKM2 signaling mechanisms in osteoclast
differentiation. We have formulated a four-step model of IgSF11-PKM2 function during OC differentiation,
which we will test with the aid of hCD3-iFL, a retroviral (RV) construct to directly activate intracellular IgSF11 in
differentiating OCs. We will first investigate possible crosstalk between RANK and IgSF11-PKM2, which we
speculate is mediated by TRAF6-dependent K63-linked polyubiquitination of the IgSF11 scaffold protein PSD-
95. Second, we aim to identify kinases proximal to the IgSF11-PSD-95 complex that phosphorylate PKM2.
Third, we will use RV mutants to confirm the importance of various PKM2 modifications, PKM2 allosteric
confirmation, and PKM2 subcellular localization to OC differentiation. Finally, PKM2 is a well-characterized
enzymatic regulator of glycolysis, so we will employ metabolic assays and inhibitors to confirm the significance
of this aspect of PKM2 function to OC differentiation. These studies will be critically important to initial
validation and characterization of a putative IgSF11-PKM2 pathway and its function during OC differentiation.
在炎症条件下,骨破坏可能与骨吸收的过度活动有关。
破骨细胞(OCs),这不仅是由于过多的OCs分化造成的,也是由于过度的
业主立案法团的成熟。虽然目前大多数的骨丢失治疗是通过减少OC数量来防止骨丢失,但它
如果未来的治疗策略侧重于OC成熟而不是早期OC,可能会更好
避免抑制依赖于成骨之间相互作用的偶联骨形成的分化
成骨细胞和成骨细胞。为了以成熟为靶点,我们以前发现了免疫球蛋白超家族
成员11(IgSF11)是一种新的细胞表面受体,可调节OC的分化,而不是新骨
队形。为了表征igsf11信号,我们用质谱仪分析了磷酸化的蛋白质。
经IgSF11活化并鉴定为丙酮酸激酶M2(PKM2)的酶催化最后一步
糖酵解,作为下游靶点。这一发现突出了一个潜在的比之前已知的更大的
在骨质疏松症分化和炎症性骨丢失中代谢调节的决定作用。因此,我们
提出以下具体目标:1.研究IgSF11-PKM2信号在炎症性骨丢失中的作用。
我们将通过使用脂多糖诱导的骨丢失来研究炎症性骨丢失中OC表达的IgSF11
骨丢失模型。为了测试PKM2依赖效应的贡献,我们将治疗内毒素诱导的IgSF11-/-
小鼠使用PKM2的小分子调节剂(Tepp-46,紫草素)。我们的初步数据显示,Tepp-
46激活PKM2可减少DSS所致的骨丢失。为了检查IgSF11的表达是否会影响结肠炎-
对于相关的骨丢失,我们将使用IgSF11缺陷小鼠进行DSS诱导的结肠炎实验。我们会
使用Tepp-46或紫草素治疗的IgSF11-/-小鼠也进行DSS诱导的结肠炎实验。这些
研究对于确定IgSF11和PKM2对临床相关的贡献的交集是至关重要的
炎症性骨丢失。2.破骨细胞中IgSF11-PKM2信号传导机制的研究
差异化。我们建立了IgSF11-PKM2在OC分化过程中功能的四步模型,
我们将在hCD3-iFL的帮助下进行测试,hCD3-iFL是一种逆转录病毒(RV)结构,可以直接激活细胞内的IgSF11
区分OCS。我们将首先调查RANK和IGSF11-PKM2之间可能的串扰,我们
推测是由依赖TRAF6的K63连接的IgSF11支架蛋白PSD-的多泛素化所介导的。
95.第二,我们的目标是识别靠近IgSF11-PSD-95复合体的磷酸化PKM2的激酶。
第三,我们将使用RV突变体来确认各种PKM2修饰、PKM2变构的重要性
PKM2亚细胞定位对OC分化的影响。最后,PKM2是一个很好的特征
糖酵解的酶调节作用,因此我们将使用代谢检测和抑制剂来确认其意义
PKM2在OC分化中的这一方面作用。这些研究将对初始阶段至关重要
一个可能的IgSF11-PKM2通路的验证和特征及其在OC分化过程中的功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YONGWON CHOI其他文献
YONGWON CHOI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YONGWON CHOI', 18)}}的其他基金
IgSF11 Signaling Controls Osteoclast Maturation and Pathogenic Bone Loss
IgSF11 信号传导控制破骨细胞成熟和致病性骨质流失
- 批准号:
10544787 - 财政年份:2022
- 资助金额:
$ 35.75万 - 项目类别:
Regulation of T cell responses to oral antigens
T 细胞对口腔抗原反应的调节
- 批准号:
9306661 - 财政年份:2017
- 资助金额:
$ 35.75万 - 项目类别:
Dendritic Cell-Mediated Oral Antigen Tolerance and the Lung
树突状细胞介导的口腔抗原耐受和肺
- 批准号:
9238657 - 财政年份:2016
- 资助金额:
$ 35.75万 - 项目类别:
Cell Adhesion Regulation of Osteoclast Maturation
破骨细胞成熟的细胞粘附调节
- 批准号:
9899199 - 财政年份:2016
- 资助金额:
$ 35.75万 - 项目类别:
Dendritic Cell-Mediated Oral Antigen Tolerance and the Lung
树突状细胞介导的口腔抗原耐受和肺
- 批准号:
9086712 - 财政年份:2016
- 资助金额:
$ 35.75万 - 项目类别:
Identifying Rare Subtypes of CD8 T-cells Using Single Cell Reactors
使用单细胞反应器鉴定 CD8 T 细胞的稀有亚型
- 批准号:
9086041 - 财政年份:2016
- 资助金额:
$ 35.75万 - 项目类别:
Identifying Rare Subtypes of CD8 T-cells Using Single Cell Reactors
使用单细胞反应器鉴定 CD8 T 细胞的稀有亚型
- 批准号:
9262845 - 财政年份:2016
- 资助金额:
$ 35.75万 - 项目类别:
相似海外基金
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
Elucidating mechanisms of biological hydrogen conversion through model metalloenzymes
通过模型金属酶阐明生物氢转化机制
- 批准号:
2419343 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Standard Grant
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 35.75万 - 项目类别:
Research Grant














{{item.name}}会员




