Advanced Statistical Analytics of MRI in MS
MS 中 MRI 的高级统计分析
基本信息
- 批准号:10337315
- 负责人:
- 金额:$ 56.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-04-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptionBiological MarkersBiological ProcessBlood VesselsBrainCentral VeinChronicClinicClinicalClinical ResearchDataDetectionDevelopmentDiagnosisDiagnosticDiffuseDiseaseDisease ProgressionEtiologyFunctional disorderFutureGoalsHeterogeneityHistopathologyHornsImageImage AnalysisIndividualLesionLocationMagnetic Resonance ImagingMeasuresMethodsMicrogliaMonitorMorphologyMultimodal ImagingMultiple SclerosisMultiple Sclerosis LesionsMyelinNeurologistOutcomePathologyPatientsPatternPhasePhenotypePredispositionProcessResearchSequence AnalysisSeveritiesSignal TransductionStatistical Data InterpretationStatistical MethodsSystemT2 weighted imagingTechniquesTherapeuticTimeTissuesTranslatingTranslationsValidationVentricularVisualWorkanalysis pipelineautomated analysisbaseburden of illnessclinical decision-makingclinical practiceclinically relevantdensitydiagnostic accuracydisabilityeducation resourcesgray matterillness lengthimaging biomarkerimaging studyimprovedindexingindividual patientinfancyinjury and repairischemic lesionmagnetic resonance imaging biomarkermultimodalitymultiparametric imagingneuroimagingnovelolder patientprecision medicineradiologistradiomicsrepairedresearch studysoftware developmentstatisticsstemtargeted treatmenttissue injurytoolwhite matter
项目摘要
PROJECT SUMMARY
Quantitative radiomic analysis of MS based on MRI, performed by extracting imaging correlates of MS
pathophysiology, has been recognized as critical for more accurate and earlier diagnostics, improved precision
in clinical decision-making, and more powerful outcomes in trials for targeted MS therapeutics. Unfortunately,
the application of these approaches in MS are still in their infancy and several challenges unique to MS remain
to be solved before radiomic analyses can be translated in clinical and research practice. A major challenge for
the diagnosis and monitoring of MS is to disentangle the heterogeneity of white matter lesions, both from an
etiologic perspective and in the degree of tissue injury. The presence of confluent clusters of lesions that are
comprised of multiple lesions, particularly around the ventricular horns, poses a key challenge for dissecting this
heterogeneity in lesions: while histopathology shows great phenotypic variability both within and between
lesions, most neuroimaging studies average metrics across lesion clusters losing the valuable information about
each individual lesion. In this proposal, we propose to use advanced statistical analysis of signal intensity from
multi-parametric imaging to distinguish individual lesions and more accurately phenotype them, and thus
facilitate much greater understanding of an individual patients burden of disease and easier application to clinical
practice and research studies.
We will also create tools that will facilitate the adoption of these techniques in the
clinic. We will validate these approaches by comparison to expert neuroradiologist assessments and determine
added value of these techniques.
We further propose to develop a state-of-the-art method for the discovery of
covariate effects in diffuse processes in the normal-appearing white matter and gray matter, which will facilitate
many potential studies of MS pathology and therapeutics. We will also develop software implementations and
educational resources to disseminate the methods developed.
项目总结
基于MRI的多发性硬化症的定量放射组学分析,通过提取多发性硬化症的成像相关性来执行
病理生理学,已被认为是更准确和更早的诊断的关键,提高了精确度
在临床决策中,以及在靶向多发性硬化症治疗的试验中取得更强大的结果。不幸的是,
这些方法在多发性硬化症中应用仍处于初级阶段,多发性硬化症仍面临一些独特的挑战
在放射学分析可以转化为临床和研究实践之前需要解决。面临的一个重大挑战
MS的诊断和监测是为了区分脑白质病变的异质性,两者都来自于
病因学角度和组织损伤程度。存在融合的病变簇,这些病变
由多个病变组成,特别是在脑室角周围,这对解剖这个构成了一个关键的挑战。
皮损的异质性:尽管组织病理学显示内部和之间的表型差异很大
病变,大多数神经成像研究平均病变簇的度量失去了有价值的信息
每一个单独的损伤。在这项建议中,我们建议使用高级统计分析的信号强度从
多参数成像以区分单个病变并更准确地对其进行表型,因此
有助于更好地了解单个患者的疾病负担,并更容易应用于临床
实践和研究学习。
我们还将创建工具,以促进在
诊所。我们将通过与神经放射科专家的评估进行比较来验证这些方法,并确定
这些技术的附加值。
我们还建议开发一种最先进的方法来发现
正常白质和灰质弥散过程中的协变量效应,这将有助于
许多关于多发性硬化症病理学和治疗学的潜在研究。我们还将开发软件实现和
利用教育资源传播所制定的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Takeshi Shinohara其他文献
Russell Takeshi Shinohara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Takeshi Shinohara', 18)}}的其他基金
Advanced Statistical Analytics of MRI in MS
MS 中 MRI 的高级统计分析
- 批准号:
10561725 - 财政年份:2020
- 资助金额:
$ 56.68万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10385763 - 财政年份:2020
- 资助金额:
$ 56.68万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10028642 - 财政年份:2020
- 资助金额:
$ 56.68万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10188649 - 财政年份:2020
- 资助金额:
$ 56.68万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10609841 - 财政年份:2020
- 资助金额:
$ 56.68万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
8614974 - 财政年份:2013
- 资助金额:
$ 56.68万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
8738735 - 财政年份:2013
- 资助金额:
$ 56.68万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
8890255 - 财政年份:2013
- 资助金额:
$ 56.68万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
9320865 - 财政年份:2013
- 资助金额:
$ 56.68万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
9115248 - 财政年份:2013
- 资助金额:
$ 56.68万 - 项目类别:
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
$ 56.68万 - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
$ 56.68万 - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
$ 56.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
$ 56.68万 - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
$ 56.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
$ 56.68万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
$ 56.68万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
$ 56.68万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
$ 56.68万 - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
$ 56.68万 - 项目类别:
Studentship