Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
基本信息
- 批准号:10188649
- 负责人:
- 金额:$ 60.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-10 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAdolescentAdoptedAdoptionAdvocateAgingAlzheimer&aposs DiseaseAreaAtrophicBenchmarkingBiologicalBrainComplexComputer softwareConceptionsControlled StudyCross-Sectional StudiesDataDatabasesDevelopmentDwarfismFederal GovernmentFunctional Magnetic Resonance ImagingFundingGene ExpressionGenerationsGenomicsGoldImageImaging PhantomsInstitutionIntelligenceInvestmentsLiquid substanceLocationLongevityMachine LearningMagnetic Resonance ImagingManufacturer NameMeasurementMeasuresMethodologyMethodsModelingModernizationMulticenter StudiesMultivariate AnalysisPathologyPatternPerformancePhenotypePrivatizationProtocols documentationReproducibilityResearch DesignResearch MethodologySex DifferencesSiteStatistical MethodsStructureTechniquesThickTravelUnited States National Institutes of HealthWorkcognitive developmentcombatcomplex datadata harmonizationdesigngray matterhealthy agingimage reconstructionimaging modalityimaging studyimprovedinstrumentinterestmild cognitive impairmentneuroimagingnext generationnovelpersonalized predictionspredictive modelingstemtoolwhite matter
项目摘要
PROJECT SUMMARY
Over the past decade, the number of large multi-center neuroimaging studies has skyrocketed due to growing
investments by federal governments and private entities interested in brain development, aging, and pathology.
This has led to the accumulation of vast amounts of magnetic resonance imaging (MRI) data which have been
acquired with varying amounts of technical harmonization. Such efforts, which have focused on protocol
harmonization and comparisons with imaging phantoms, have shown great strides toward reducing inter-
scanner differences in imaging features extracted for further study. Unfortunately, MRI show inter-instrument
biases even in the most carefully controlled studies. Our group, among many others, has shown that these
differences often dwarf biological differences of interest measured using both structural and functional MRI.
To address this, the field has rapidly been developing tools for the harmonization of imaging data after
acquisition. We have proposed several such tools, and our work has often focused on the adaptation of
methods used in genomic studies for batch effect correction. Our most recent such work involved the ComBat
method, which uses empirical Bayesian estimation to correct for site effects in both means and variances of
imaging features under study. To date, these tools have been successfully applied in studies of cortical
thickness, white matter microstructure, and functional connectivity. However, there are unfortunately several
key limitations to the ComBat method for imaging studies that stem from its original conception for gene
expression studies.
ComBat was designed for the study of inter-scanner differences in cross-sectionally acquired data.
While cross-sectional studies are of great interest and exceedingly common, much focus in the context of
healthy brain development and aging has shifted to measuring longitudinal trajectories. In such cases, the
naïve application of ComBat is flawed and methodological research is necessary for appropriate harmonization
tools to be developed. Furthermore, more complex nested study design in which multiple scanners are used
per institution, or a subset of subjects are imaged on multiple scanners for harmonization purposes, are
increasingly common. Another key area of interest in modern neuroimaging studies is to focus on inter-region
structural or functional connectivity and uses multivariate pattern analysis (MVPA) to improve our
understanding of phenotypic associations as well as for personalized predictions. Unfortunately, the current
state-of-the-art in image harmonization ignores correlation structure between measurements, and thus inter-
scanner differences often persist.
In this project, we propose a new generation of techniques that are applicable under complex study
designs and harmonize appropriately for studies involving applications of MVPA. In our final aim of this
proposal, we will apply the methods developed for more complex study designs and MVPA in the context of
two of the largest NIH-funded multi-center consortia across the lifespan.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Takeshi Shinohara其他文献
Russell Takeshi Shinohara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Takeshi Shinohara', 18)}}的其他基金
Advanced Statistical Analytics of MRI in MS
MS 中 MRI 的高级统计分析
- 批准号:
10561725 - 财政年份:2020
- 资助金额:
$ 60.39万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10385763 - 财政年份:2020
- 资助金额:
$ 60.39万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10028642 - 财政年份:2020
- 资助金额:
$ 60.39万 - 项目类别:
Advanced Statistical Analytics of MRI in MS
MS 中 MRI 的高级统计分析
- 批准号:
10337315 - 财政年份:2020
- 资助金额:
$ 60.39万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10609841 - 财政年份:2020
- 资助金额:
$ 60.39万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
8614974 - 财政年份:2013
- 资助金额:
$ 60.39万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
8738735 - 财政年份:2013
- 资助金额:
$ 60.39万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
8890255 - 财政年份:2013
- 资助金额:
$ 60.39万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
9320865 - 财政年份:2013
- 资助金额:
$ 60.39万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
9115248 - 财政年份:2013
- 资助金额:
$ 60.39万 - 项目类别:
相似海外基金
Exploring the mental health and wellbeing of adolescent parent families affected by HIV in South Africa
探讨南非受艾滋病毒影响的青少年父母家庭的心理健康和福祉
- 批准号:
ES/Y00860X/1 - 财政年份:2024
- 资助金额:
$ 60.39万 - 项目类别:
Fellowship
Scaling-up co-designed adolescent mental health interventions
扩大共同设计的青少年心理健康干预措施
- 批准号:
MR/Y020286/1 - 财政年份:2024
- 资助金额:
$ 60.39万 - 项目类别:
Fellowship
Shared Spaces: The How, When, and Why of Adolescent Intergroup Interactions
共享空间:青少年群体间互动的方式、时间和原因
- 批准号:
ES/T014709/2 - 财政年份:2024
- 资助金额:
$ 60.39万 - 项目类别:
Research Grant
Social Media Mechanisms Affecting Adolescent Mental Health (SoMe3)
影响青少年心理健康的社交媒体机制 (SoMe3)
- 批准号:
MR/X034925/1 - 财政年份:2024
- 资助金额:
$ 60.39万 - 项目类别:
Fellowship
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:
10751263 - 财政年份:2024
- 资助金额:
$ 60.39万 - 项目类别:
The Impact of Online Social Interactions on Adolescent Cognition
在线社交互动对青少年认知的影响
- 批准号:
DE240101039 - 财政年份:2024
- 资助金额:
$ 60.39万 - 项目类别:
Discovery Early Career Researcher Award
Adolescent sugar overconsumption programs food choices via altered dopamine signalling
青少年糖过度消费通过改变多巴胺信号来影响食物选择
- 批准号:
BB/Y006496/1 - 财政年份:2024
- 资助金额:
$ 60.39万 - 项目类别:
Research Grant
Resilience Factors, Pain, and Physical Activity in Adolescent Chronic Musculoskeletal Pain
青少年慢性肌肉骨骼疼痛的弹性因素、疼痛和体力活动
- 批准号:
10984668 - 财政年份:2024
- 资助金额:
$ 60.39万 - 项目类别:
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
- 批准号:
23K09542 - 财政年份:2023
- 资助金额:
$ 60.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluating the impact of changes in the proximity and density of vape retailers around secondary schools in Ontario on adolescent vaping behaviours
评估安大略省中学周围电子烟零售商的距离和密度变化对青少年电子烟行为的影响
- 批准号:
500515 - 财政年份:2023
- 资助金额:
$ 60.39万 - 项目类别:
Operating Grants