Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
基本信息
- 批准号:8614974
- 负责人:
- 金额:$ 37.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-28 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAnatomyApplications GrantsAreaAttention deficit hyperactivity disorderBasic ScienceBehaviorBrainBrain PathologyBrain imagingClinical ManagementComplexComputer softwareComputing MethodologiesContrast MediaDataData AnalysesDatabasesDevelopmentDisease MarkerDisease ProgressionEtiologyFailureGoalsGrantHeterogeneityHospitalsHumanImageImage AnalysisImageryIncidenceJournalsLesionMachine LearningMagnetic Resonance ImagingMedicalMedical ImagingMethodologyMethodsModelingMultiple SclerosisNational Institute of Neurological Disorders and StrokePathologyPopulation StudyPositioning AttributeProtocols documentationPublishingResearchResearch PersonnelResolutionSamplingSchemeScienceSiteSolutionsStatistical Data InterpretationStatistical MethodsStatistical ModelsStructureTechniquesTechnologyUnited States National Institutes of HealthVisualization softwareWorkbasebioimagingclinical practicedesignfallsimaging Segmentationimaging modalitymemberneuroimagingnext generationopen sourcepublic health relevanceskillstoolwhite matter
项目摘要
Abstract
Medical imaging is a cornerstone of basic science and clinical practice. To discover new
mechanisms and markers of disease and their crucial implications for clinical practice,
large multi-center imaging studies are acquiring terabytes of complex multi-modality
imaging data cross-sectionally and longitudinally over decades.
The statistical analysis of data from such studies is challenging due to the complex
structure of the imaging data acquired and the ultra-high dimensionality. Furthermore,
the heterogeneity of anatomy, pathology, and imaging protocols causes instability and
failure of many current state-of-the-art image analysis methods. This grant proposes
statistical frameworks for studying populations through biomedical imaging, scalable and
robust methods for the identification and accurate quantification of pathology, and
analytic tools for the cross-sectional and longitudinal examination of etiology and
disease progression.
These techniques will be applied to address key goals of the motivating large and multi-
center studies of multiple sclerosis and Alzheimer's disease conducted at Johns
Hopkins Hospital, the National Institute of Neurological Disorders and Stroke, and across
the globe. The project will create methods for uncovering and quantifying brain lesion
pathology, incidence, and trajectory. Methods developed under this grant will be targeted
towards these neuroimaging goals, but will form the basis for statistical image analysis
methods applicable broadly in the biomedical sciences.
摘要
医学影像是基础科学和临床实践的基石。发现新的
疾病的机制和标记物及其对临床实践的重要影响,
大型多中心成像研究正在获取TB级的复杂多模式
几十年的横截面和纵向成像数据。
由于这类研究的复杂性,对数据的统计分析是具有挑战性的
获取的成像数据的结构和超高维。此外,
解剖、病理和成像方案的异质性导致不稳定和
许多当前最先进的图像分析方法都失败了。这项拨款建议
通过生物医学成像研究人群的统计框架,可扩展和
用于识别和准确量化病理的可靠方法,以及
病因学横断面和纵向检查的分析工具
疾病的发展。
这些技术将被应用于解决激励大型和多企业的关键目标
约翰斯中心对多发性硬化症和阿尔茨海默病的研究
霍普金斯医院,国家神经疾病和中风研究所,以及
环球网。该项目将创造发现和量化脑损伤的方法。
病理、发病和轨迹。根据这笔赠款开发的方法将成为目标
这些神经成像目标,但将形成统计图像分析的基础
在生物医学科学中广泛适用的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russell Takeshi Shinohara其他文献
Russell Takeshi Shinohara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russell Takeshi Shinohara', 18)}}的其他基金
Advanced Statistical Analytics of MRI in MS
MS 中 MRI 的高级统计分析
- 批准号:
10561725 - 财政年份:2020
- 资助金额:
$ 37.34万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10385763 - 财政年份:2020
- 资助金额:
$ 37.34万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10028642 - 财政年份:2020
- 资助金额:
$ 37.34万 - 项目类别:
Advanced Statistical Analytics of MRI in MS
MS 中 MRI 的高级统计分析
- 批准号:
10337315 - 财政年份:2020
- 资助金额:
$ 37.34万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10188649 - 财政年份:2020
- 资助金额:
$ 37.34万 - 项目类别:
Harmonization of Multi-Site Neuroimaging Data from Complex Study Designs
协调复杂研究设计中的多部位神经影像数据
- 批准号:
10609841 - 财政年份:2020
- 资助金额:
$ 37.34万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
8738735 - 财政年份:2013
- 资助金额:
$ 37.34万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
8890255 - 财政年份:2013
- 资助金额:
$ 37.34万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
9320865 - 财政年份:2013
- 资助金额:
$ 37.34万 - 项目类别:
Statistical methods for large and complex databases of ultra-high-dimensional
超高维大型复杂数据库的统计方法
- 批准号:
9115248 - 财政年份:2013
- 资助金额:
$ 37.34万 - 项目类别: