Mapping the cell specific DNA damage-induced molecular and bioelectrical responses in the 3D cardiac unit

绘制 3D 心脏单元中细胞特异性 DNA 损伤诱导的分子和生物电反应

基本信息

  • 批准号:
    10344373
  • 负责人:
  • 金额:
    $ 61.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-15 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

PROJECT SUMMARY This project will test the hypothesis that DNA damage in cardiomyocytes activates p53 leading to mitochondrial alterations and secretion of paracrine factors that drive heart failure. The premise for this has been established from our preliminary data and from the work of others. First, DNA damage and activated DNA damage response (DDR) have been observed in cardiovascular disease (CVD) in humans. Second, studies also show evidence that multiple cell types in the cardiac unit, including cardiomyocytes (CM) and cardiac fibroblasts (CF) display markers of DNA damage and cellular senescence in several disease pathologies. Third, we have recently identified that nuclear DNA damage drives dilated cardiomyopathy. Specifically, cardiomyocyte-depletion of the DNA repair endonuclease, ERCC1-XPF in mice, upregulates the DNA damage response gene, p53, and leads to irregular mitochondrial cristae, accumulation of lipids and increased oxidative stress. Additionally, there is an increase in several cardiac failure and senescence associated markers. However, the exact molecular underpinnings and cell-specificity of these DNA damage-induced changes is poorly understood. One barrier to addressing this question in vivo has been lack of appropriate tools, where DNA damage can be introduced in only one cell type (e.g., CM) and its effect on CF and cardiac function can be investigated. Additionally, 2D cell culture and co-culture systems fall short, as they cannot reproduce tissue dynamics present in a cardiac unit. Herein, we have developed several tools enable the study of cell-cell communication of 3D multicellular system. Specific Aim 1 will map the molecular, functional, and architectural changes upon loss of ERCC1 in CM. In this aim, we will test the mechanistic role of p53 and reactive oxygen species on a number of cellular and mitochondrial parameters, as well as cardiomyocyte electrophysiology. Specific Aim 2 will test whether stochastic, spontaneous DNA damage in the CM or CF drives cardiac electromechanical dysfunction in a cell- autonomous or cell non-autonomous manner through a paracrine effect on neighboring cells. Here, we will analyze the pathological secretome upon genotoxic stress, as well as test the role of eliminating senescent cells on cardiac health. This work is technically innovative as it uses a number of unique tools including concomitant optical and bioelectrical measurements in 3D cardiac organoids. These contributions will be significant because DNA damage is unavoidable and intimately linked to cardiac health and disease. Our team is uniquely qualified to perform this work, with expertise in DNA damage/ repair, cellular senescence, nanofabrication, human iPSC- derived cardiac tissue engineering, and data science. This analysis, we believe, will increase our fundamental understanding of the connection between DNA damage and heart disease and potentially pave the way for new treatment strategies.
项目摘要 该项目将测试心肌细胞中DNA损伤激活p53导致线粒体损伤的假设。 导致心力衰竭的旁分泌因子的改变和分泌。这样做的前提已经确立 从我们的初步数据和其他人的工作。第一,DNA损伤和激活的DNA损伤反应 (DDR)在人类心血管疾病(CVD)中观察到。其次,研究还表明, 心脏单位中的多种细胞类型,包括心肌细胞(CM)和心脏成纤维细胞(CF), DNA损伤和细胞衰老的标志物。第三,我们最近 发现核DNA损伤导致扩张型心肌病。具体地说,心肌细胞耗竭的 DNA修复核酸内切酶ERCC 1-XPF在小鼠中上调DNA损伤反应基因p53, 线粒体嵴不规则、脂质积累和氧化应激增加。此外,还有一个 几种心力衰竭和衰老相关标志物增加。然而,确切的分子 这些DNA损伤诱导的变化的基础和细胞特异性知之甚少。的一个障碍 在体内解决这个问题一直缺乏合适的工具,其中DNA损伤可以引入到体内。 仅一种细胞类型(例如,CM)及其对CF和心脏功能的影响。此外,2D单元格 培养和共培养系统是不足的,因为它们不能再现心脏单位中存在的组织动力学。 在这里,我们已经开发了几种工具,使三维多细胞系统的细胞间通讯的研究。 Specific Aim 1将绘制CM中ERCC 1丢失后的分子、功能和结构变化。在这 目的是,我们将测试p53和活性氧在一些细胞中的机制作用, 线粒体参数以及心肌细胞电生理学。第2章测试是否 CM或CF中的随机自发DNA损伤驱动细胞中的心脏机电功能障碍, 自主或细胞非自主的方式通过对邻近细胞的旁分泌效应。在这里,我们将 分析基因毒性应激后病理性分泌组,并检测其对衰老细胞的清除作用 关于心脏健康这项工作是技术创新,因为它使用了一些独特的工具,包括伴随 3D心脏类器官中的光学和生物电测量。这些贡献将是巨大的,因为 DNA损伤是不可避免的,与心脏健康和疾病密切相关。我们的团队是独一无二的 进行这项工作,在DNA损伤/修复,细胞衰老,纳米纤维,人类iPSC的专业知识, 衍生心脏组织工程和数据科学。我们相信,这一分析将增加我们的基本面。 了解DNA损伤和心脏病之间的联系,并可能为新的研究铺平道路。 治疗策略。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tzahi Cohen-Karni其他文献

Tzahi Cohen-Karni的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tzahi Cohen-Karni', 18)}}的其他基金

Mapping the cell specific DNA damage-induced molecular and bioelectrical responses in the 3D cardiac unit
绘制 3D 心脏单元中细胞特异性 DNA 损伤诱导的分子和生物电反应
  • 批准号:
    10534185
  • 财政年份:
    2021
  • 资助金额:
    $ 61.99万
  • 项目类别:
Hybrid-nanomaterials for non-genetic optical stimulation of excitable cells
用于可兴奋细胞非遗传光刺激的混合纳米材料
  • 批准号:
    9979070
  • 财政年份:
    2020
  • 资助金额:
    $ 61.99万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 61.99万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 61.99万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 61.99万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 61.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 61.99万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 61.99万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 61.99万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 61.99万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 61.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 61.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了