The role of PTEN in DNA metabolism and replication
PTEN 在 DNA 代谢和复制中的作用
基本信息
- 批准号:10343770
- 负责人:
- 金额:$ 4.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AllelesBiological ModelsCancer BiologyCell CycleCell Cycle CheckpointCell DeathCellsChromosomesComb animal structureDHODH geneDNADNA DamageDNA biosynthesisDNA metabolismDependenceDihydroorotate Dehydrogenase InhibitorEmbryoEndometrial CarcinomaExhibitsFDA approvedFiberFibroblastsGlioblastomaGlutamineGoalsGrowthKnowledgeLabelLeadLeflunomideLengthLipidsMalignant NeoplasmsMalignant neoplasm of prostateMethodsMolecularMusMutateNormal tissue morphologyNucleotide Metabolism PathwayPTEN genePathway interactionsPatientsPharmaceutical PreparationsPharmacologyPhosphatidylinositolsPhosphoric Monoester HydrolasesPhosphotransferasesPhysiologic pulseProteinsProto-Oncogene Proteins c-aktPyrimidineRegulationResearchRoleS phaseSecond Messenger SystemsSignal PathwaySignal TransductionSolid NeoplasmSpecificityTherapeuticThymidineTumor Suppressor ProteinsWorkanalogcancer celldesignlive cell imagingmalignant breast neoplasmnucleotide metabolismreplication stressresponsetargeted treatmenttumor
项目摘要
RESEARCH SUMMARY
The goal of this project is to understand the role of PTEN in DNA metabolism and replication. Phosphatase and
tensin homolog deleted on chromosome ten (PTEN) is one of the most frequently lost or mutated tumor
suppressors in cancer, commonly lost in endometrial cancer, glioblastoma, breast cancer, and prostate cancer.
PTEN is a dual-specificity phosphatase whose main substrate is the lipid second messenger
phosphatidylinositol-3,4,5-trisphosphate (PIP3), and PTEN activity negatively regulates the phosphoinositide 3-
kinase (PI3K)/AKT growth signaling pathway. Work in our lab and others has shown that the deletion of both
alleles of PTEN causes increased growth rate and proliferation in a variety of normal tissues, including in primary
mouse embryonic fibroblasts (MEFs). Additionally, we have demonstrated a glutamine dependency, an
increased glutamine flux into de novo pyrimidine synthesis, and an increased sensitivity to pharmacologic
inhibition of de novo pyrimidine synthesis in primary Pten–/– MEFs. We propose that these results implicate the
nucleotide metabolism, the cell cycle, and DNA replication as potential avenues through which the loss of PTEN
could contribute to deregulated growth. We posit to explore these pathways using primary Ptenflox/flox MEFs as a
model system.
In Aim 1, we will investigate how the loss of PTEN expression sensitizes cells to inhibition of de novo pyrimidine
synthesis through altered cell cycle dynamics. To investigate the molecular basis of this sensitivity, we will
examine DNA damage and replication stress, cell death, and cell cycle checkpoint activation after pharmacologic
inhibition of de novo pyrimidine synthesis in primary Pten–/– MEFs. Given the potential use of leflunomide for
patients with PTEN-deficient tumors, a comprehensive understanding of the cellular consequences of
leflunomide treatment in the context of PTEN loss will enable more effective use.
In Aim 2, we will characterize the impact of PTEN loss on the duration of S phase and DNA replication efficiency.
To determine the length of S phase in primary Pten–/– MEFs, we will use two experimental methods that allow
for the determination of S phase length: dual-pulse DNA replication labeling with thymidine analogs and live cell
imaging in combination with fluorescent-labeled cell cycle-specific proteins. To investigate DNA replication
efficiency, we will perform fiber combing to directly visualize replicating DNA. Knowledge of the mechanism
behind altered replication dynamics in the context of PTEN loss would contribute to the basic understanding of
the mechanisms of evading growth regulation in cancer cells.
研究综述
该项目的目标是了解PTEN在DNA代谢和复制中的作用。磷酸酶和
第10号染色体上的张力蛋白同源物缺失(tensin homolog deleted on chromosome ten,PTEN)是最常见的缺失或突变的肿瘤之一
癌症中的抑制因子,通常在子宫内膜癌、胶质母细胞瘤、乳腺癌和前列腺癌中丢失。
PTEN是一种双特异性磷酸酶,其主要底物是脂质第二信使
磷脂酰肌醇-3,4,5-三磷酸(PIP 3),和PTEN活性负调节磷酸肌醇3-磷酸
激酶(PI 3 K)/AKT生长信号通路。我们实验室和其他实验室的工作表明,
PTEN的等位基因导致多种正常组织中生长速率和增殖增加,包括原发性肝癌中的生长速率和增殖。
小鼠胚胎成纤维细胞(MEFs)。此外,我们已经证明了谷氨酰胺依赖性,
增加谷氨酰胺流入从头嘧啶合成,并增加对药理学的敏感性,
抑制原代Pten-/-MEF中从头嘧啶合成。我们认为这些结果暗示了
核苷酸代谢,细胞周期和DNA复制作为潜在的途径,通过该损失的PTEN
可能有助于放松管制的增长。我们尝试使用初级Ptenflox/flox MEFs作为
模型系统
在目标1中,我们将研究PTEN表达的缺失如何使细胞对从头嘧啶的抑制敏感
通过改变细胞周期动力学合成。为了研究这种敏感性的分子基础,我们将
检查DNA损伤和复制应激,细胞死亡和细胞周期检查点激活后,药理学
抑制原代Pten-/-MEF中从头嘧啶合成。鉴于来氟米特的潜在用途,
与PTEN缺陷型肿瘤患者,细胞后果的全面了解,
来氟米特治疗在PTEN丢失的情况下将能够更有效地使用。
在目标2中,我们将描述PTEN缺失对S期持续时间和DNA复制效率的影响。
为了确定原代Pten-/- MEFs中S相的长度,我们将使用两种实验方法,
用于测定S期长度:用胸苷类似物和活细胞进行双脉冲DNA复制标记
与荧光标记的细胞周期特异性蛋白质组合成像。为了研究DNA复制
为了提高效率,我们将进行纤维梳理以直接可视化复制DNA。机制知识
在PTEN缺失的背景下改变复制动力学的背后,将有助于对
逃避癌细胞生长调节的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Abigail Rose Lubin其他文献
Abigail Rose Lubin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Abigail Rose Lubin', 18)}}的其他基金
The role of PTEN in DNA metabolism and replication
PTEN 在 DNA 代谢和复制中的作用
- 批准号:
10797177 - 财政年份:2023
- 资助金额:
$ 4.61万 - 项目类别:
相似海外基金
Nonlocal Variational Problems from Physical and Biological Models
物理和生物模型的非局部变分问题
- 批准号:
2306962 - 财政年份:2023
- 资助金额:
$ 4.61万 - 项目类别:
Standard Grant
Point-of-care optical spectroscopy platform and novel ratio-metric algorithms for rapid and systematic functional characterization of biological models in vivo
即时光学光谱平台和新颖的比率度量算法,可快速、系统地表征体内生物模型的功能
- 批准号:
10655174 - 财政年份:2023
- 资助金额:
$ 4.61万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2022
- 资助金额:
$ 4.61万 - 项目类别:
Discovery Grants Program - Individual
Micro-electrofluidic platforms for monitoring 3D human biological models
用于监测 3D 人体生物模型的微电流体平台
- 批准号:
DP220102872 - 财政年份:2022
- 资助金额:
$ 4.61万 - 项目类别:
Discovery Projects
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2021
- 资助金额:
$ 4.61万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2020
- 资助金额:
$ 4.61万 - 项目类别:
Discovery Grants Program - Individual
Harnessing machine learning and cloud computing to test biological models of the role of white matter in human learning
利用机器学习和云计算来测试白质在人类学习中的作用的生物模型
- 批准号:
2004877 - 财政年份:2020
- 资助金额:
$ 4.61万 - 项目类别:
Fellowship Award
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9899988 - 财政年份:2019
- 资助金额:
$ 4.61万 - 项目类别:
Multi-scale stochastic systems motivated by biological models
由生物模型驱动的多尺度随机系统
- 批准号:
RGPIN-2015-06573 - 财政年份:2019
- 资助金额:
$ 4.61万 - 项目类别:
Discovery Grants Program - Individual
A Portable low-cost, Point of Investigation CapCell Scope to Image and Quantify the Major Axes of Metabolism and the Associated Vasculature in In vitro and In vivo Biological Models
便携式低成本调查点 CapCell 示波器,用于对体外和体内生物模型中的主要代谢轴和相关脉管系统进行成像和量化
- 批准号:
9753458 - 财政年份:2019
- 资助金额:
$ 4.61万 - 项目类别:














{{item.name}}会员




