Mapping Molecular and Phenotypic Interactions in Alzheimers Disease
绘制阿尔茨海默病的分子和表型相互作用图谱
基本信息
- 批准号:10347286
- 负责人:
- 金额:$ 73.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:ATAC-seqAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease pathologyAlzheimer&aposs disease riskAmyloid beta-ProteinBehaviorBiological AssayBiological FactorsBiological MarkersBiological ProcessBrainBrain imagingCardiovascular DiseasesCell LineChromatinChromosome MappingCognitive deficitsDataData SetDatabasesDementiaDevelopmentDiabetes MellitusDiseaseElderlyFrequenciesGene Expression RegulationGene FrequencyGenesGeneticGenotype-Tissue Expression ProjectGoalsGuidelinesImmunityImpaired cognitionIndividualLinkMapsMedicalMendelian randomizationMetabolic PathwayMethodsNerveNeurodegenerative DisordersPathway interactionsPhenotypeProcessPublicationsQuantitative Trait LociReporterResearchResolutionResourcesRiskRoleSenile PlaquesSignal TransductionSiteSourceStructureSumTalentsTechniquesTestingTherapeutic InterventionTimeTissuesValidationVariantWorkbasebiobankbrain cellbrain tissuecase controlcell typecognitive functioncomputerized toolsdeep sequencingexperiencefunctional genomicsgenetic variantgenome analysisgenome wide association studygenome-widegenomic dataimprovedlarge datasetslipid metabolismmolecular phenotypemortalitynext generationnovelphenotypic dataprogramspublic health relevancerare variantsleep patterntraittranscriptometranscriptome sequencingworking group
项目摘要
Abstract
Alzheimer’s Disease (AD) is a leading cause of cognitive decline and mortality in the elderly. Treatment
options for AD are limited, and there is a huge need for better medical options. AD is associated with
progressive expansion of beta amyloid plaques in the brain, leading over time to loss of brain tissue and
cognitive function. However, at present, understanding of the underlying drivers of AD is incomplete. In this
project, we will use a combination of large data sets of genetic and phenotypic data, as well as functional
genomics, to further elucidate the biological processes, pathways, and cell types leading to AD. Specifically,
we will use existing functional genomics data, as well as newly generated Massively Parallel Reporter Assays
and advanced colocalization and outlier-based statistical approaches to identify functional regulatory variants
at disease-relevant loci; these will be used to increase the power to detect AD-associated variants, particularly
for low-frequency sites. Furthermore, we will focus on linking intermediate biomarkers such as metabolites
and brain imaging data, and traits such as diabetes, cardiovascular disease and sleep patterns to AD risk using
Mendelian Randomization and clustering techniques. We will further aim to partition the GWAS signal into
discrete biological factors, both by pathways/processes and by tissue. In sum, this work will lead to deeper
understanding of the causal genetic drivers of Alzheimer’s Disease.
摘要
阿尔茨海默病(AD)是老年人认知能力下降和死亡的主要原因。治疗
AD的选择是有限的,并且存在对更好的医疗选择的巨大需求。AD与
大脑中β淀粉样蛋白斑块的进行性扩张,随着时间的推移导致脑组织的损失,
认知功能然而,目前,对AD的潜在驱动因素的理解是不完整的。在这
项目,我们将使用遗传和表型数据的大数据集的组合,以及功能
基因组学,以进一步阐明导致AD的生物学过程、途径和细胞类型。具体地说,
我们将利用现有的功能基因组学数据,以及新产生的大规模平行报告分析,
以及先进的共定位和基于离群值的统计方法来识别功能调节变体
在疾病相关位点;这些将用于增加检测AD相关变异的能力,特别是
低频网站此外,我们将重点关注中间生物标志物,如代谢物,
和大脑成像数据,以及糖尿病、心血管疾病和睡眠模式等特征与AD风险的关系。
孟德尔随机化和聚类技术。我们将进一步致力于将GWAS信号划分为
离散的生物学因素,通过途径/过程和组织。总之,这项工作将导致更深层次的
了解阿尔茨海默病的因果遗传驱动因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Montgomery其他文献
Stephen Montgomery的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Montgomery', 18)}}的其他基金
Mapping Molecular and Phenotypic Interactions in Alzheimers Disease
绘制阿尔茨海默病的分子和表型相互作用图谱
- 批准号:
10574498 - 财政年份:2020
- 资助金额:
$ 73.58万 - 项目类别:
Mapping Molecular and Phenotypic Interactions in Alzheimers Disease
绘制阿尔茨海默病的分子和表型相互作用图谱
- 批准号:
9917286 - 财政年份:2020
- 资助金额:
$ 73.58万 - 项目类别:
Stanford/Salk MoTrPAC Site for Genomes, Epigenomes and Transcriptomes
斯坦福/索尔克 MoTrPAC 基因组、表观基因组和转录组网站
- 批准号:
9518558 - 财政年份:2016
- 资助金额:
$ 73.58万 - 项目类别:
Stanford/Salk MoTrPAC Site for Genomes, Epigenomes and Transcriptomes
斯坦福/索尔克 MoTrPAC 基因组、表观基因组和转录组网站
- 批准号:
10318103 - 财政年份:2016
- 资助金额:
$ 73.58万 - 项目类别:
Predicting causal non-coding variants in a founder population
预测创始人群体中的因果非编码变异
- 批准号:
8792751 - 财政年份:2015
- 资助金额:
$ 73.58万 - 项目类别:
Predicting causal non-coding variants in a founder population
预测创始人群体中的因果非编码变异
- 批准号:
9306895 - 财政年份:2015
- 资助金额:
$ 73.58万 - 项目类别:
Predicting causal non-coding variants in a founder population
预测创始人群体中的因果非编码变异
- 批准号:
9116910 - 财政年份:2015
- 资助金额:
$ 73.58万 - 项目类别:














{{item.name}}会员




