Predicting causal non-coding variants in a founder population
预测创始人群体中的因果非编码变异
基本信息
- 批准号:9306895
- 负责人:
- 金额:$ 45.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmic AnalysisAllelesBayesian MethodBiological AssayBiologyCRISPR/Cas technologyCatalogingCatalogsCategoriesCell LineCellsClustered Regularly Interspaced Short Palindromic RepeatsCommunitiesComplexComputing MethodologiesDataData SetDatabasesDevelopmentDimensionsDiseaseEpigenetic ProcessFamilyFounder GenerationFrequenciesGene ExpressionGene Expression RegulationGeneticGenetic VariationGenomeGenome engineeringGenomic SegmentGenomicsGenotype-Tissue Expression ProjectGoalsHealthHumanHuman GeneticsHuman GenomeIndividualInheritedLinkLinkage DisequilibriumMachine LearningMapsMeasuresMethodsModelingMolecularMutationNucleotidesOpen Reading FramesPathogenesisPhenotypePlayPopulationPropertyRNA SplicingResearchResolutionResourcesRoleSamplingSardiniaSignal TransductionStatistical ModelsSupervisionSystemTechniquesTestingTranscriptUntranslated RNAUpdateValidationVariantWidespread Diseasebasecohortcomputerized toolsdata modelingdensitydisease phenotypedisorder riskfunctional genomicsgenetic linkage analysisgenetic predictorsgenetic variantgenome annotationgenome editinggenome sequencinggenomic datagenomic variationhuman datahuman diseasehuman genome sequencingimprovedinnovationinsertion/deletion mutationlearning strategymolecular phenotypenovelprediction algorithmpublic health relevancetraittranscriptometranscriptome sequencingtranscriptomicswhole genome
项目摘要
DESCRIPTION (provided by applicant): In order to characterize the molecular and cellular causes of human disease, it will be essential to unravel the functional impact of genetic variation. However, we are currently unable to predict the impact of the majority genetic variants that lie in non-coding regions of the genome, where indeed most complex disease-associated variants are found. Additionally, recent evidence suggests that a significant fraction of the non-coding genome is likely to be functional, often playing a role in gene regulation. Therefore, our limited understanding of non- coding variation is a critical hurdle to characterizing the genetic basis of disease. The goal of this project is to develop methods for interpreting non-coding genetic variation: to provide a robust and extensible Bayesian method for predicting causal variants from full genomes, to identify and validate a large set of functional non- coding variants using CRISPR technology, and to predict disease-relevant traits likely to be affected by each variant. Our project will leverage a unique cohort from a founder population in Sardinia, with genome sequence and/or transcriptome data available from 3000 individuals, along with extensive phenotyping for hundreds of traits. We will combine advanced statistical modeling with experimental validation based on genome engineering to identify causal non-coding variants affecting biomedical traits in the cohort, along with predicting functional mechanisms through which these variants ultimately perturb the cell. In Aim 1, we develop computational methods for predicting causal non-coding variation from full genomes, incorporating informative genomic features including epigenetic data, sequence motifs, and conservation information into a Bayesian approach jointly modeling multiple transcriptomic signals. We will optimize and apply these methods on genome and transcriptome data available for the Sardinia cohort to identify a large set of variants predicted to causally affect gene expression. Based on these predictions, in Aim 2, we connect putative causal variants with the diverse set of disease-relevant traits measured in the cohort, using network inference to capture the cascade from genetic variation to gene expression to disease. We will develop methods to integrate across variants, using the models in Aim 1, to identify the common causal mechanisms related to each trait. In Aim 3, we validate the causal impact of non-coding variants predicted to affect high-level traits. We will us genome editing through CRISPR to introduce individual genetic variants into cell lines and use qPCR to validate the predicted effects on gene expression. Finally, a major goal throughout this proposal will be to provide the research community with convenient computational tools for the prediction of causal non-coding variants from individual genomes, updated on an ongoing basis to integrate the most recent genomic annotations and public data in order to provide the best possible accuracy in predicting causal variants and the traits they are likely to affect. Our projet will greatly advance our understanding of non-coding genetic variation, the specific mechanisms affected by causal variants, and the downstream consequences to the cell and individual health.
描述(由申请人提供):为了表征人类疾病的分子和细胞原因,必须阐明遗传变异的功能影响。然而,我们目前无法预测位于基因组非编码区的大多数遗传变异的影响,事实上,在那里发现了最复杂的疾病相关变异。此外,最近的证据表明,非编码基因组的很大一部分可能是功能性的,通常在基因调控中发挥作用。因此,我们对非编码变异的有限理解是表征疾病遗传基础的关键障碍。该项目的目标是开发用于解释非编码遗传变异的方法:提供一种稳健且可扩展的贝叶斯方法,用于从全基因组预测因果变异,使用CRISPR技术识别和验证大量功能性非编码变异,并预测可能受每个变异影响的疾病相关性状。我们的项目将利用来自撒丁岛创始人群体的独特队列,从3000个个体获得基因组序列和/或转录组数据,沿着数百种性状的广泛表型。我们将结合联合收割机先进的统计建模与实验验证的基础上基因组工程,以确定因果非编码变异影响生物医学性状的队列,沿着预测功能机制,通过这些变异最终扰乱细胞。在目标1中,我们开发了用于预测全基因组的因果非编码变异的计算方法,将信息丰富的基因组特征,包括表观遗传数据,序列基序和保守信息纳入贝叶斯方法,共同建模多个转录组信号。我们将优化并应用这些方法对撒丁岛队列的基因组和转录组数据,以确定预测会因果影响基因表达的大量变体。基于这些预测,在目标2中,我们将假定的因果变异与队列中测量的各种疾病相关性状联系起来,使用网络推理来捕获从遗传变异到基因表达再到疾病的级联反应。我们将开发跨变异整合的方法,使用目标1中的模型,以确定与每个性状相关的共同因果机制。在目标3中,我们验证了预测影响高水平性状的非编码变体的因果影响。我们将通过CRISPR进行基因组编辑,将个体遗传变异引入细胞系,并使用qPCR验证对基因表达的预测影响。最后,整个提案的一个主要目标是为研究界提供方便的计算工具,用于预测来自个体基因组的因果非编码变体,并不断更新,以整合最新的基因组注释和公共数据,以便在预测因果变体及其可能影响的性状方面提供最佳的准确性。我们的项目将极大地推进我们对非编码遗传变异的理解,受因果变异影响的特定机制,以及对细胞和个体健康的下游后果。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PML nuclear bodies contribute to the basal expression of the mTOR inhibitor DDIT4.
- DOI:10.1038/srep45038
- 发表时间:2017-03-23
- 期刊:
- 影响因子:4.6
- 作者:Salsman J;Stathakis A;Parker E;Chung D;Anthes LE;Koskowich KL;Lahsaee S;Gaston D;Kukurba KR;Smith KS;Chute IC;Léger D;Frost LD;Montgomery SB;Lewis SM;Eskiw C;Dellaire G
- 通讯作者:Dellaire G
RNA Sequencing and Analysis.
- DOI:10.1101/pdb.top084970
- 发表时间:2015-04-13
- 期刊:
- 影响因子:0
- 作者:Kukurba KR;Montgomery SB
- 通讯作者:Montgomery SB
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Montgomery其他文献
Stephen Montgomery的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Montgomery', 18)}}的其他基金
Mapping Molecular and Phenotypic Interactions in Alzheimers Disease
绘制阿尔茨海默病的分子和表型相互作用图谱
- 批准号:
10574498 - 财政年份:2020
- 资助金额:
$ 45.43万 - 项目类别:
Mapping Molecular and Phenotypic Interactions in Alzheimers Disease
绘制阿尔茨海默病的分子和表型相互作用图谱
- 批准号:
10347286 - 财政年份:2020
- 资助金额:
$ 45.43万 - 项目类别:
Mapping Molecular and Phenotypic Interactions in Alzheimers Disease
绘制阿尔茨海默病的分子和表型相互作用图谱
- 批准号:
9917286 - 财政年份:2020
- 资助金额:
$ 45.43万 - 项目类别:
Stanford/Salk MoTrPAC Site for Genomes, Epigenomes and Transcriptomes
斯坦福/索尔克 MoTrPAC 基因组、表观基因组和转录组网站
- 批准号:
9518558 - 财政年份:2016
- 资助金额:
$ 45.43万 - 项目类别:
Stanford/Salk MoTrPAC Site for Genomes, Epigenomes and Transcriptomes
斯坦福/索尔克 MoTrPAC 基因组、表观基因组和转录组网站
- 批准号:
10318103 - 财政年份:2016
- 资助金额:
$ 45.43万 - 项目类别:
Predicting causal non-coding variants in a founder population
预测创始人群体中的因果非编码变异
- 批准号:
8792751 - 财政年份:2015
- 资助金额:
$ 45.43万 - 项目类别:
Predicting causal non-coding variants in a founder population
预测创始人群体中的因果非编码变异
- 批准号:
9116910 - 财政年份:2015
- 资助金额:
$ 45.43万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 45.43万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 45.43万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 45.43万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 45.43万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 45.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 45.43万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 45.43万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 45.43万 - 项目类别:
Grant-in-Aid for Early-Career Scientists